PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interactions of carbon nanoparticles from packagings with components of food, drugs and biologically active molecules - a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanomaterials are very important in the field of packaging of food, medicines and dietary supplements. Modern packagings often contain nanoparticles that provide them new feature - nanoparticles are used to activate mainly the packaging inner surface. Carbon occurs in several allotropic forms, such as diamond, graphite (including nanotubes and fullerenes), carbides, and nanocrystalline diamond which is produced in a process of radio frequency plasma activated chemical vapor deposition (RF PA CVD). Variety of allotropic forms of carbon results in different chemical and biological interactions between carbon nanoparticles and the polymer matrix material. Carbon nanopraticles can be used to activate the inner surface of packagings. There is a growing demand for food free of harmful chemicals such as chloramphenicol or toxic food colorings (metanil yellow, auramine, orange II or red aura). The use of nanotechnology in the food packaging sector opens up new possibilities for creating sensors to detect certain harmful analytes. These sensors are easy and quick to use. The basis of their actions is to understand the interactions between nanoparticles and chemicals. Nanoparticles can be utilized to create intelligent high performance packaging materials for contact with food, drugs and biologically active molecules, which will be safe for health of the consumers.
Słowa kluczowe
Rocznik
Strony
21--27
Opis fizyczny
Bibliogr 72 poz., rys., tab., wykr., zdj
Twórcy
  • PK Koszalin University of Technology, Department of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland
  • PK Koszalin University of Technology, Department of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland
  • PK Koszalin University of Technology, Department of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland
autor
  • Heart Prosthesis Institute of the Foundation of Cardiac Surgery Development, Wolnosci 345a, 41-800 Zabrze, Poland
  • UWM University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Oczapowskiego 11, 10-719 Olsztyn, Poland
Bibliografia
  • [1] Ozimek L., Pospiech E., Narine S.: Nanotechnologies in food and meat processing. Acta Sci Pol Technol Alimen 9 (2010) 401-412.
  • [2] Otles S., Yalcin B.: Food Chemistry and Nanoscience. Journal of Nanomaterials & Molecular Nanotechnology (2013) 2:4
  • [3] Sanguansri P., Augustin M.A.: Nanoscale materials development - a food industry perspective. Trends Food Sci Technol. 17 (2006) 547-556.
  • [4] Bugusu B.A., Bryant C.M.: Food Nanoscience in the United States and the Role of IFT, Institute of Food Technologists WAFDO Annual Conference, Denver, CO, 2007 Institute of Food Technologists.
  • [5] Gögüs F., Fadiloglu S. Food Chemistry, Nobel Yayin Dagitim (2006)
  • [6] Alibolandi M., Hadizadeh F. et al.: Design and fabrication of an aptasensor for chloramphenicol basedonenergy transfer of CdTe quantum dots to graphene oxide sheet. Mater. Sci. Eng. 48 (2015) 611-619.
  • [7] Govindasamy M. et al.: Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J Colloid Interface Sci 485 (2017) 129-136.
  • [8] Chuanuwatanakul S., Chailapakul O., Motomizu S.: Electrochemical analysis of chloramphenicol using boron-doped diamond electrode applied to a flowinjection system. Anal. Sci. 24 (4) (2008) 493-498.
  • [9] Borowiec J., Wang R., Zhu L., Zhang J.: Synthesis of nitrogendoped grapheme nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim. Acta 99 (2013) 138-144.
  • [10] Duan N., Wu S. et al.: Advances in aptasensors for the detection of food contaminants. Analyst 141 (2016) 3942-3961.
  • [11] Wiest D.B., Cochran F., Tecklenburg F.: Chloramphenicol toxicity revisited: a 12-year-old patient with a brain abscess. J. Pediat. Pharmacol. Therap. 17 (2) (2012) 182-188.
  • [12] Yang G., Zhao F.: Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes molecularly imprinted polymer. Biosens. Bioelectron. 64 (2015) 416-422.
  • [13] Muller A. et al: Archimedean synthesis and magic numbers: ‘‘sizing’’ giant molybdenum-oxide-based molecular spheres of the keplerate type. Angew Chem Int Ed 38 (1999) 3238-3241.
  • [14] Dutta T., Sarkar S.: Nanocarbon–{[Na10(PrW10O36)]2•130H2O} composite to detect toxic food coloring dyes at nanolevel. Appl Nanosci 6(8) (2016) 1191-1197.
  • [15] Berman A., Ahn D.J., Lio A., Salmeron M.: Total alignment of calcite at acidic polydiacetylene films: cooperativity at the organicinorganic interface. Science (1995) 269: 515.
  • [16] Lu Y., Yang Y., Sellinger A., Lu M., Huang J., Fan H., et al.: Selfassembly of mesoscopically ordered chromatic polydiacetylene/ silica nanocomposites. Nature 410 (2001) 913-917.
  • [17] Min-Cheol Lim and Young-Rok Kim.: Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food. J. Microbiol. Biotechnol. 26(9) (2016) 1505-1516.
  • [18] Reichert A., Nagy J.O., Spevak W., Charych D.: Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus. J. Am. Chem. Soc. 117 (1995) 829-830.
  • [19] Kim J.M., Lee Y.B. et al.: A polydiacetylene-based fluorescent sensor chip. J. Am. Chem. Soc. 127 (2005) 17580-17581.
  • [20] Okada S., Peng S., Spevak W., Charych D.: Color and chromism of polydiacetylene vesicles. Acc. Chem. Res. 31 (1998) 229-239.
  • [21] Akter H., Shaikh A.A., Chowdhury T.R. et al.: Gold nanoparticlemodified indium tin oxide electrode for highly sensitive electrochemical detection of melamine. ECS Electrochem Lett 2(8) (2013) 13-15.
  • [22] Chen N. et al.: Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide. Microchim Acta 182 (2015) 1967-1975.
  • [23] Yang S.P., Ding J.H., Zheng J.,Hu B., Li J.Q., Chen H.W., Zhou Z.Q., Ciao X.L.: Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal Chem 81(7) (2009) 2426-2436.
  • [24] Li J.H., Kuang D.Z., Feng Y.G., Zhang F.Z., Xu Z.F., Liu M.Q.: A novel electrochemical method for sensitive detection of melamine in infant formula and milk using ascorbic acid as recognition element. Bull Kor Chem Soc 33(8) (2012) 2499-2507.
  • [25] Vasimalai N., John S.A.: Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Biosens Bioelectron 42 (2013) 267-272.
  • [26] Wen Y.Y., Liu H.T. et al.: Determination of melamine in milk powder, milk and fish feed by capillary electrophoresis: a good alternative to HPLC. J Sci Food Agric 90(13) (2010) 2178-2182.
  • [27] Sun H.W., Wang L.X., Ai L.F., Liang S.X., Wu H.: A sensitive and validated method for determination of melamine residue in liquid milk by reversed phase high-performance liquid chromatography with solid-phase extraction. Food Control 21(5) (2010) 686-691.
  • [28] Xu X.M., Ren Y.P. et al.: Direct determination of melamine in dairy products by gas chromatography/mass spectrometry with coupled column separation. Anal Chim Acta 650(1) (2009) 39-43.
  • [29] Dai H.C., Shi Y.L., Wang Y.J., et al.: Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens Bioelectron 53 (2014) 76-81.
  • [30] Ai K.L., Liu Y.L., Lu L.H.: Hydrogen-bonding recognition- -induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131(27) (2009) 9496-9497.
  • [31] Xu Q., Wei H.P., Du S., et al.: Detection of subnanomolar melamine based on electrochemical accumulation coupled with enzyme colorimetric assay. J Agric Food Chem 61(8) (2013) 1810-1817.
  • [32] Zhang J.M., Qu S.C., Zhang L.S., et al.: Quantitative surface enhanced raman scattering detection based on the Bsandwich^ structure substrate. Spectrochim Acta A 79(3) (2011) 625-630.
  • [33] Cao Q., Zhao H., Zeng L.X., Wang J., Wang R., Qiu X.H., He Y.J.: Electrochemical determination of melamine using oligonucleotides modified gold electrodes. Talanta 80(2) (2009) 484-488.
  • [34] Chen D., Tang L.H., Li J.H.: Graphene-based materials in electrochemistry. Chem Soc Rev 39(8) (2010) 3157-3180.
  • [35] Li S.J., Deng D.H., Shi Q., Liu S.R.: Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite and its application to amperometric sensing of dopamine. Microchim Acta 177(3-4) (2012) 325-331.
  • [36] Ma X.M., Liu Z.N., et al.: Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with goldgraphene nanocomposite. Microchim Acta 180(5-6) (2013) 461-468.
  • [37] Soukka T., Antonen K., Harma H., et al.: Highly sensitive immunoassay of free prostatespecific antigen in serum using europium (III) nanoparticle label technology. Clin Chim Acta 328 (2003) 45-58.
  • [38] Soukka T., Halrmal H., Paukkunen J., Lolvgren T.: Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates. Anal Chem 73 (2001) 2254-2260.
  • [39] Yang H., Li H., Jiang X.: Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluid Nanofluid 5 (2008) 571-583.
  • [40] Tan W., Wang K., He X., Zhao X.J., et al.: Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5) (2004) 621-638.
  • [41] Gu H.W., Xu K., Xu C., Xu B.: Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9 (2006) 941-949.
  • [42] Lin Y.S., Tsai P.J., Weng M.F., Chen Y.C.: Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal Chem 77(6) (2005) 1753-1760.
  • [43] Basu M., Seggerson S., Henshaw J., Jiang J., et al.: Nanobiosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibodybound gold NanoWire arrays (GNWA). Glycoconj J 21 (2004) 487-496.
  • [44] Edgar R., McKinstry M., Hwang J., Oppenheim A.,B., Fekete R.,A., Giulian G., Merril C., Nagashima K., Adhya S.: Highsensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103(13) (2006) 4841-4845.
  • [45] El-Boubbou K., Gruden C., Huang X.: Magnetic glyconanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc 129(44) (2007) 13392-13393.
  • [46] Lee L.Y., Ong S.L., Hu J.Y., Ng W.J., Feng Y., Tan X., Wong S.W.: Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Appl Environ Microbiol 70(10) (2004) 5732-5736.
  • [47] Ho J.A., Hsu H.W.: Predures for preparing Escherichia coli O157:H7 immunoliposome and its application in liposome immunoassay. Anal Chem 75 (2003) 4330-4334.
  • [48] Chen C.S., Baeumner A.J., Durst R.A.: Protein G-liposomal nanovesicles as universal reagents for immunoassays. Talanta 67 (2005) 205-211.
  • [49] Chen C.S, Durst R.A.: Simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes with an array-based immunosorbent assay using universal protein Gliposomal nanovesicles. Talanta 69 (2006) 232-238.
  • [50] Wang L., Zhao W., et al.: Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug Chem 18(2) (2007) 297-301.
  • [51] Tiwari S.K., Kumar V., Huczko A., Oraon R., et al: Magical Allotropes of Carbon: Prospects and Applications, Critical Reviews in Solid State and Materials Sciences 41(4) (2016) 257-317.
  • [52] Gambini J., Ingles M., Olaso G., Lopez-Grueso R., et al.: Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Medicine and Cellular Longevity (2015) 837042.
  • [53] Huang X et al.: Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocolloids 64 (2017) 157-165.
  • [54] Neves A.R., Lucio M., Lima J.L.C., Reis S.: Resveratrol in medicinal chemistry: A critical review of its pharmacokinetics, drugdelivery, and membrane interactions. Current Medicinal Chemistry 19(11) (2012) 1663-1681.
  • [55] Summerlin N., Soo E., Thakur S., Qu Z., Jambhrunkar S., Popat A.: Resveratrol nanoformulations: Challenges and opportunities. International Journal of Pharmaceutics 479(2) (2015) 282-290.
  • [56] Isailovic B.D., Kostic I.T., Zvonar A., ÐorCevic V.B., et al.: Resveratrol loaded liposomes produced by different techniques. Innovative Food Science & Emerging Technologies 19 (2013) 181-189.
  • [57] Yong Ch.W.: Study of interactions between polymer nanoparticles and cell membranes at atomistic levels. Philosophical Transaction B (2017)
  • [58] Monteiro-Riviere N.A., Tran C.L.: Nanotoxicology: progress toward nanomedicine, 2nd edn. Boca Raton, FL: CRC Press. (2014)
  • [59] Thake T.H.F., Webb J.R., Nash A., Rappoport J.Z., Notman R.: Permeation of polystyrene nanoparticles across model lipid bilayer membranes. Soft Matter 9, 10 (2013) 265-274.
  • [60] Yu T.: Surfactant Assisted Dispersion of Single-Walled Carbon Nanotubes in Polyvinylpyrrolidone Solutions. Electronic Thesis and Dissertation Repository (2014)
  • [61] O’Connell M.J. et al.: Reversible water-solubilization of singlewalled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342 (2001) 265-271.
  • [62] Maity A., Sinha Ray S., Hato M.J.: The bulk polymerisation of Nvinylcarbazole in the presence of both multi- and single-walled carbon nanotubes: A comparative study. Polymer 49 (2008) 2857-2865.
  • [63] Zheng M., et al.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2 (2003) 338-342.
  • [64] Dror Y., Pyckhout-Hintzen W., Cohen Y.: Conformation of Polymers Dispersing Single-Walled Carbon Nanotubes in Water: A Small-Angle Neutron Scattering Study. Macromolecules 38 (2005) 7828-7836.
  • [65] Yang K., Zhu L.Z., Xing B.S.: Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology 40(6) (2006) 1855-1861.
  • [66] Peng H.B., Pan B., et al.: Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity- and structure-controlled process. Journal of Hazardous Materials 89-96 (2012) 233-234.
  • [67] Tournus F., Charlier J.C.: Ab initio study of benzene adsorption on carbon nanotubes. Physical Review B (2005) 71(16):165421.
  • [68] Gotovac S., Song L., Kanoh H., et al.: Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects 300(1-2) (2007) 117-121.
  • [69] Yang Y.N., Chun Y., Sheng G.Y., et al.: pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir, 20(16) (2004) 6736-6741.
  • [70] Zhang S.J., Shao T., Bekaroglu S.S.K., et al.: Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry. Water Research 44(6) (2010) 2067-2074.
  • [71] Hu J., Shao D.D., Chen C.L., et al.: Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. The Journal of Physical Chemistry B 114(20) (2010) 6779-6785.
  • [72] Ravichandran R.: Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities and Uncertainties for Global Market. International Journal of Green Nanotechnology: Physics and Chemistry (2010).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f97b363a-c107-470f-a65e-ca4c69fc77c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.