Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In several coal mines in the Upper Silesian Coal Basin (USCB), in Poland, radium removal from mine water was necessary in order to mitigate the negative results of radium release with mine effluents. The most efficient method of radium removal was based on the application of barium chloride, implemented in full technical scale in two Polish collieries. Removal efficiency exceeding 95% of the initial activity was achieved. The technology was implemented in full technical scale in two collieries. The problem was that barium chloride is dangerous to health and moreover continuous use of the powdered chemical was required to achieve good results. Therefore, the possible application of zeolite for radium removal was tested in laboratory experiments. This passive technique would be less hazardous for miners and would not require full-time supervision meaning it would enable a reduction in workload. The main goal of the investigations described in this paper was to check the capability of zeolites to remove natural radionuclides from mine waters and compare the removal efficiency of radium isotopes with the results obtained from the application of barium chloride solution for the same purpose.
Wydawca
Czasopismo
Rocznik
Tom
Strony
174--181
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Central Mining Institute, Silesian Centre for Environmental Radioactivity, Plac Gwarków, 40-166, Katowice, Poland
autor
- Central Mining Institute, Silesian Centre for Environmental Radioactivity, Plac Gwarków, 40-166, Katowice, Poland
autor
- Central Mining Institute, Silesian Centre for Environmental Radioactivity, Plac Gwarków, 40-166, Katowice, Poland
autor
- Central Mining Institute, Silesian Centre for Environmental Radioactivity, Plac Gwarków, 40-166, Katowice, Poland
Bibliografia
- 1. Adamczyk, Z., & Białecka, B. (2005). Hydrothermal synthesis of zeolites from Polish coal fly ash. Polish Journal of Environmental Studies, 14(6), 713-719.
- 2. Averill, D. W., Moffett, D., Webber, R. T., Whittle, L., & Wood, J. A. (1982). Removal of radium-226 from uranium mining effluents. Final report. Joint government-industry program for the removal of radium-226 from uranium mining effluents Burlington, Ontario: Wastewater Technology Centre, Environment Canada.
- 3. Bandura, L., Franus, M., Józefaciuk, G., & Franus, W. (2015). Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills clean-up. Fuel, 147, 100-107. https://doi.org/10.1016/j.fuel.2015.01.067.
- 4. Chałupnik, S., Franus, W., Wysocka, M., & Gzyl, G. (2013). Application of zeolites for radium removal from mine water. Environmental Science and Pollution Research International, 20, 7900-7906. https://doi.org/10.1007/s11356-013-1877-5.
- 5. Chałupnik, S., & Lebecka, J. (1993). Determination of 226Ra, 228Ra, 224Ra in water and aqueous solutions by liquid scintillation counting. Proceedings of liquid scintillation spectrometry 1992, radiocarbonUSA: Tuscon, Arizona 1993.
- 6. Chałupnik, S., & Wysocka, M. (2000). Removal of radium from mine waters - the experience from the coal mine. Proceedings of the 7th international mine water association congress. Katowice, Poland: Silesian University.
- 7. Chałupnik, S., & Wysocka, M. (2008). Radium removal from mine waters in underground treatment installations. Journal of Environmental Radioactivity, 99(10), 1548-1552. https://doi.org/10.1016/j.jenvrad.2007.12.024.
- 8. Czurda, K. A., & Haus, R. (2002). Reactive barriers with fly ash zeolites for in situ groundwater remediation. Applied Clay Science, 21, 13-20. https://doi.org/10.1016/S0169-1317(01)00088-6.
- 9. Doula, M. K. (2009). Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Research, 43, 3659-3672. https://doi.org/10.1016/j.watres.2009.05.037.
- 10. Feng, D., Aldrich, C., & Tan, H. (2000). Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Minerals Engineering, 13, 623-642. https://doi.org/10.1016/S0892-6875(00)00045-5.
- 11. Franczyk, J., & Garbulewski, K. (2013). Evaluation of zeolite-sand mixtures as reactive materials protecting groundwater at waste disposal sites. Journal of Environmental Sciences, 25(9), 1764-1772. https://doi.org/10.1016/S1001-0742(12)60270-8.
- 12. Franus, W. (2012). Characteryzation of X-type zeolite prepared from coal fly ash. Polish Journal of Environmental Studies, 2, 337-343.
- 13. Franus, W., & Dudek, K. (1999). Clay minerals and clinoptilolite of variegated shales formation of the skole unit. Polish Flysch Carpathians. Geologica Carpathica, 50, 23-24.
- 14. Franus, W., & Wdowin, M. (2010). Removal of ammonium ions by selected natural and synthetic zeolites. Gospodarka Surowcami Mineralnymi, 26(4), 133-148.
- 15. Franus, M., Wdowin, M., Bandura, L., & Franus, W. (2015). Removal of environmental pollution using zeolites from fly ash. A review. Fresenius Environmental Bulletin, 24(3a), 854-866.
- 16. Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186(9), 5721-5729. https://doi.org/10.1007/s10661-014-3815-5.
- 17. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.
- 18. Gaikwad, R. W., & Gupta, D. V. (2008). Review on removal of heavy metals from acid mine drainage. Applied Ecology and Environmental Research, 6(3), 81-98. https://doi.org/10.15666/aeer/0603_081098.
- 19. Huck, P. M., Anderson, W. B., & Andrews, R. C. (1985). Development of a new process for treating uranium mining effluents. Water Science and Technology, 17(2-3), 337-350. https://doi.org/10.2166/wst.1985.0142.
- 20. Hynes, T. P., Meadley, T., & Thompson, N. (1985). Effluent treatment experience at a high grade uranium mine. Proceedings of annual conference of the Canadian society for civil engineering and the 7th Canadian hydrotechnical conference. Vol. 3. Proceedings of annual conference of the Canadian society for civil engineering and the 7th Canadian hydrotechnical conference (pp. 263-283). Saskatoon, Saskatchewan, Canada: Canadian Society for Civil Engineering.
- 21. IAEA (1976). International atomic energy agency, management of wastes from the mining and milling of uranium and thorium ores - a code of practice and guide to the code. Safety series No. 44Vienna: IAEA.
- 22. IAEA-TECDOC-1419 (2004). International Atomic Energy Agency (2004). Treatment of liquid effluent from uranium mines and mills. Report of a co-ordinated research project 1996-2000Vienna: IAEA.
- 23. Inglezakis, V. J., Loizidou, M. M., & Grigoropoulou, H. P. (2004). Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility. Journal of Colloid and Interface Science, 275, 570-576. https://doi.org/10.1016/j.jcis.2004.02.070.
- 24. Karmen, M., Zabukovec Logar, N., Šiljeg, M., & Farkas, A. (2013). Natural zeolites in water treatment - how effective is their use. In W. Elshorbagy (Ed.). Water treatmentInTechhttps://doi.org/10.5772/50738 2013.
- 25. Lebecka, J., Chałupnik, S., Michalik, B., Wysocka, M., Skubacz, K., & Mielnikow, A. (1994). Radioactivity of mine waters in Upper Silesian Coal Basin and its influence on natural environment. In D. J. Reddish (Ed.). Proceedings od 5th international mine water congress (pp. 657-662). Nottingham, U.K: University of Nottingham & IMWA 18-23 September 1994.
- 26. Macala, J., & Pandova, I. (2007). Natural zeolite-clinoptilolite - raw material serviceable in the reduction of toxical components at combustion engines noxious gases. Gospodarka Surowcami Mineralnymi, 23(4), 19-26.
- 27. Misaelides, P. (2011). Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144, 15-18. https://doi.org/10.1016/j.micromeso.2011.03.024.
- 28. Moffett, D., & Barnes, E. (1974). Radium-226 removal by precipitation and sedimentation in settling ponds. CIM Bulletin, 74(832), 128-134.
- 29. Perego, C., Bagatin, R., Tagliabue, M., & Vignola, R. (2013). Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous and Mesoporous Materials, 166, 37-49. https://doi.org/10.1016/j.micromeso.2012.04.048.
- 30. Shadrikov, A. S., & Petukhov, A. D. (2014). Natural zeolite-clinoptilolite characteristics determination and modification. Bulletin of National University of Ukraine, Vol. 781, Technical University in Lvov “Theory and Practice in Construction”162-167.
- 31. Sommerville, R., Blissett, R., Rowson, N., & Blackburn, S. (2013). Producing a synthetic zeolite from improved fly ash residue. International Journal of Mineral Processing, 124, 20-25. https://doi.org/10.1016/j.minpro.2013.07.005.
- 32. Stefanowa, I. G. (1999). Natural sorbents as barriers against migration of radionuclides from radioactive waste repositories. In P. Misaelides, F. Macásek, T. J. Pinnavaia, & C. Colella (Eds.). Natural microporous materials in environmental technology (pp. 371- 379). Kluwer Academic Publishers.
- 33. Tao, Y. F., Qiu, Y., Fang, S. Y., Liu, Z. Y., Wang, Y., & Zhu, J. H. (2010). Trapping the lead ion in multi-components aqueous solution by natural clinoptilolite. Journal of Hazardous Materials, 180(1-3), 282-288. https://doi.org/10.1016/j.jhazmat.2010.04.028.
- 34. Yu, L., Han, M., & He, F. (2017). A review of treating oily wastewater. Arabian Journal of Chemistry, 10(Supplement 2), S1913-S1922. https://doi.org/10.1016/j.arabjc.2013.07.020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f979edf1-1a8e-4e2e-82f5-00ae372a3f3f