PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direction Estimation and Tracking of Coherent Sources Using a Single Acoustic Vector Sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A single acoustic vector sensor (AVS) cannot be used to find the direction-of-arrival (DOA) of two or more coherent (fully correlated) sources. We have proposed a technique for estimating DOAs (in 2D geometry) of two simultaneous coherent sources using single AVS under the assumption that acoustic sources enter in the field sequentially. The DOA estimation has been investigated with two different configurations of AVS, each consisting of three microphones in a plane. The technique has been also applied in tracking (a) an acoustic source in the presence of stationary interfering coherent source and (b) two coherent sources when the sources are changing their locations alternatively. The experimental environment has been generated using the Finite-Element Method tool viz. COMSOL to corroborate the proposed scheme.
Rocznik
Strony
209--219
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, India
  • Department of Electronics Engineering, Z.H.C.E.T., Aligarh Muslim Univesity, Aligarh, India
autor
  • Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, India
  • Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, India
Bibliografia
  • 1. Cao J., Liu J., Wang J., Lai, X. (2016), Acoustic vector sensor: reviews and future perspectives, IET Signal Processing, 11 (1): 1-9, doi: 10.1049/iet-spr.2016.0111.
  • 2. Chen H., Zhao J. (2005), Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources, Signal Processing, 85 (4): 837-847, doi: 10.1016/j.sigpro.2004.07.030.
  • 3. Chung J. (1978), Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch, The Journal of the Acoustical Society of America, 64 (6): 1613-1616, doi: 10.1121/1.382145.
  • 4. de Bree H.-E. (2003), An overview of microflown technologies, Acta Acustica united with Acustica, 89 (1): 163-172.
  • 5. Dmochowski J., Benesty J., Affes S. (2007), Direction of arrival estimation using the parameterized spatial correlation matrix, IEEE Transactions on Audio, Speech, and Language Processing, 15 (4): 1327-1339, doi: 10.1109/TASL.2006.889795.
  • 6. Du W., Kirlin R. L. (1991), Improved spatial smoothing techniques for DOA estimation of coherent signals, IEEE Transactions on Signal Processing, 39 (5): 1208-1210, doi: 10.1109/78.80975.
  • 7. Evans J. E., Johnson J. R., Sun D. (1982), Application of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance systems, Technical Report, Lincoln Laboratory.
  • 8. Fahy F. J. (1977), Measurement of acoustic intensity using the cross-spectral density of two microphone signals, The Journal of the Acoustical Society of America, 62 (4): 1057-1059, doi: 10.1121/1.381601.
  • 9. Han F.-M., Zhang S.-H. (2004), Separation of coherent multi-path signals with improved MUSIC algorithm, Systems Engineering and Electronics, 26 (6): 721-723, 763.
  • 10. Han F.-M., Zhang X.-D. (2005), An ESPRIT-like algorithm for coherent DOA estimation, IEEE Antennas and Wireless Propagation Letters, 4: 443-446, doi: 10.1109/LAWP.2005.860194.
  • 11. Hawkes M., Nehorai A. (1998), Acoustic vector-sensor beamforming and Capon direction estimation, IEEE Transactions on Signal Processing, 46 (9): 2291-2304, doi: 10.1109/ICASSP.1995.479926.
  • 12. Hochwald B., Nehorai A. (1996), Identifiability in array processing models with vector-sensor applications, IEEE Transactions on Signal Processing, 44 (1): 83-95, doi: 10.1109/78.482014.
  • 13. Kotus J. (2012), Multiple sound sources localization in real time using acoustic vector sensor, [in:] Dziech A., Czyżewski A. [Eds], Multimedia Communications, Services and Security. MCSS 2012. Communications in Computer and Information Science, Vol. 287, pp. 168-179, Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-30721-8_17.
  • 14. Kotus J. (2015), Multiple sound sources localization in free field using acoustic vector sensor, Multimedia tools and applications, 74 (12): 4235-4251, doi: 10.1007/s11042-013-1549-y.
  • 15. Kotus J., Czyżewski A. (2010), Acoustic radar employing particle velocity sensors, [in:] Nguyen N. T., Zgrzywa A., Czyżewski A. [Eds], Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80, pp. 93-103, Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-14989-4_9.
  • 16. Kotus J., Czyżewski A., Kostek B. (2016), 3D acoustic field intensity probe design and measurements, Archives of Acoustics, 41 (4): 701-711, doi: 10.1515/aoa-2016-0067.
  • 17. Kotus J., Kostek B. (2015), Measurements and visualization of sound intensity around the human head in free field using acoustic vector sensor, Journal of the Audio Engineering Society, 63 (1/2): 99-109, doi: 10.17743/jaes.2015.0009.
  • 18. Kotus J., Lopatka K., Czyżewski A. (2014), Detection and localization of selected acoustic events in acoustic field for smart surveillance applications, Multimedia Tools and Applications, 68 (1): 5-21, doi: 10.1007/s11042-012-1183-0.
  • 19. Krishnappa G. (1981), Cross-spectral method of measuring acoustic intensity by correcting phase and gain mismatch errors by microphone calibration, The Journal of the Acoustical Society of America, 69 (1): 307-310, doi: 10.1121/1.385314.
  • 20. Liu Z., Ruan X., He J. (2013), Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array, Multidimensional Systems and Signal Processing, 24 (1): 105-120, doi: 10.1007/s11045-011-0158-z.
  • 21. Lockwood M. E., Jones D. L. (2006), Beamformer performance with acoustic vector sensors in air, The Journal of the Acoustical Society of America, 119 (1): 608-619, doi: 10.1121/1.2139073.
  • 22. Miah K. H., Hixon E. L. (2010), Design and performance evaluation of a broadband three dimensional acoustic intensity measuring system, The Journal of the Acoustical Society of America, 127 (4): 2338-2346, doi: 10.1121/1.3327508.
  • 23. Moschioni G., Saggin B., Tarabini M. (2007), Sound source identification using coherence- and intensity-based methods, Instrumentation and Measurement, IEEE Transactions on, 56 (6): 2478-2485, doi: 10.1109/TIM.2007.908246.
  • 24. Nehorai A., Paldi E. (1994), Acoustic vector-sensor array processing, Signal Processing, IEEE Transactions on, 42 (9): 2481-2491, doi: 10.1109/78.317869.
  • 25. Odya P., Kotus J., Szczodrak M., Kostek B. (2017), Sound intensity distribution around organ pipe, Archives of Acoustics, 42 (1): 13-22, doi: 10.1515/aoa-2017-0002.
  • 26. Palanisamy P., Kalyanasundaram N., Swetha P. (2012), Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array, Signal Processing, 92 (1): 19-28, doi: 10.1016/j.sigpro.2011.05.021.
  • 27. Pillai S. U., Kwon, B. H. (1989), Forward/backward spatial smoothing techniques for coherent signal identification, IEEE Transactions on Acoustics, Speech, and Signal Processing, 37 (1): 8-15, doi: 10.1109/29.17496.
  • 28. Qian C., Huang L., Zeng W.-J., So H. C. (2014), Direction-of-arrival estimation for coherent signals without knowledge of source number, IEEE Sensors Journal 14 (9): 3267-3273, doi: 10.1109/JSEN.2014.2327633.
  • 29. Rinford J. (1981), Technical review to advance techniques in acoustical, Electrical and Mechanical Measurements, Bruel and Kjær, DK-2850 NAERUM, Denmark, 2: 3.
  • 30. Shan T.-J., Wax M., Kailath T. (1985), On spatial smoothing for direction-of-arrival estimation of coherent signals, IEEE Transactions on Acoustics, Speech, and Signal Processing, 33 (4): 806-811, doi: 10.1109/TASSP.1985.1164649.
  • 31. Thompson J., Tree D. (1981), Finite difference approximation errors in acoustic intensity measurements, Journal of Sound and Vibration, 75 (2): 229-238, doi: 10.1016/0022-460X(81)90341-2.
  • 32. Wajid M., Kumar A., Bahl R. (2016a), Bearing estimation in a noisy and reverberant environment using an air acoustic vector sensor, IUP Journal of Electrical and Electronics Engineering, 9 (2): 53.
  • 33. Wajid M., Kumar A., Bahl R. (2016b), Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry, The Journal of the Acoustical Society of America, 139 (5): 2815-2832, doi: 10.1121/1.4948566.
  • 34. Wajid M., Kumar A., Bahl R. (2017a), Direction-finding accuracy of an air acoustic vector sensor in correlated noise field, 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), IEEE, pp. 21-25, doi: 10.1109/ISPCC.2017.8269643.
  • 35. Wajid M., Kumar A., Bahl R. (2017b), Direction-of-arrival estimation algorithms using single acoustic vector-sensor, 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), IEEE, pp. 84-88, doi: 10.1109/MSPCT.2017.8363979.
  • 36. Wajid M., Kumar A., Bahl R. (2017c), Direction-of-arrival estimation algorithms using single acoustic vector-sensor, 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), IEEE, pp. 84-88, doi: 10.1109/MSPCT.2017.8363979.
  • 37. Wang H., Kaveh M. (1985), Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources, IEEE Transactions on Acoustics, Speech, and Signal Processing, 33 (4): 823-831, doi: 10.1109/TASSP.1985.1164667.
  • 38. Wu Y., Li G., Hu Z., Hu Y. (2014), Unambiguous directions of arrival estimation of coherent sources using acoustic vector sensor linear arrays, IET Radar, Sonar & Navigation, 9 (3): 318-323, doi: 10.1049/ietrsn.2014.0191.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9787959-2cea-47fb-bb43-d693af85802b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.