PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modal analysis of a beam with a metamaterial segment produced using additive manufacturing technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on the analysis of the dynamic response of the mechanical metamaterials manufactured using 3D printing technology. A modal analysis of a cantilever beam with a metamaterial segment was conducted to evaluate the influence of the segment geometry on the dynamic parameters of the structure, such as natural frequencies and mode shapes. A method allowing to include the effect of the actual stiffness of the beam support in the numerical model using elastic constraints was also proposed. The significant influence of the geometry of the metamaterial segment on the dynamic behaviour of the tested beam was proved. The research findings provided new insights that are significant for potential applications of metamaterials in civil engineering.
Twórcy
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Evans K.E., Alderson A. Auxetic materials: Functional materials and structures from lateral thinking! Advanced Materials. 2000;12(9):617–28.
  • 2. Tan X., Zhu S., Wang B., Kadic M. Tuning negative stiffness mechanical metamaterial’s snap-through behavior with a series-connected spring. European Journal of Mechanics, A/Solids. 2024;107(May):105382.
  • 3. Pendry J.B., Schurig D., Smith D.R. Controlling electromagnetic fields. Science. 2006;312(5781):1780–2.
  • 4. Smith D.R., Schultz S., Markoš P., Soukoulis C.M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B - Condensed Matter and Materials Physics. 2002;65(19):1–5.
  • 5. Sheng P., Zhang X.X., Liu Z., Chan C.T. Locally resonant sonic materials. Physica B: Condensed Matter. 2003;338(1–4):201–5.
  • 6. Wu P., Mu Q., Wu X., Wang L., Li X., Zhou Y., et al. Acoustic absorbers at low frequency based on split-tube metamaterials. Physics Letters, Section A: General, Atomic and Solid State Physics. 2019;383(20):2361–6.
  • 7. Zangeneh-Nejad F., Fleury R. Active times for acoustic metamaterials. Reviews in Physics. 2019;4(April):100031.
  • 8. Shelby A.R.A., Smith D.R., Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–9.
  • 9. Wang K.X., Zhou E.L., Wei B.L., Wu Y., Wang G. An efficient and accurate numerical method for the heat conduction problems of thermal metamaterials based on edge-based smoothed finite element method. Engineering Analysis with Boundary Elements. 2022;134(August 2021):282–97.
  • 10. Veselago V.G. The Electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi. 1968;10(4):509–14.
  • 11. Lakes R.S. Foam structures with a negative Poisson’s ratio. Science. 1987;235(1987):1038–41.
  • 12. Kadic M., Bückmann T., Stenger N., Thiel M., Wegener M. On the practicability of pentamode mechanical metamaterials. Applied Physics Letters. 2012;100(19).
  • 13. Wang Z., Hu H. Auxetic materials and their potential applications in textiles. Textile Research Journal. 2014;84(15):1600–11.3
  • 14. Neville R.M., Scarpa F., Pirrera A. Shape morphing Kirigami mechanical metamaterials. Scientific Reports. 2016;6(July):1–12.
  • 15. Xiao D., Kang X., Li Y., Wu W., Lu J., Zhao G., et al. Insight into the negative Poisson’s ratio effect of metallic auxetic reentrant honeycomb under dynamic compression. Materials Science and Engineering: A. 2019;763(July):138151.
  • 16. Wang K., Wu C., Qian Z., Zhang C., Wang B., Vannan M.A. Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Additive Manufacturing. 2016;12:31–7.
  • 17. Kolken H.M.A., Janbaz S., Leeflang S.M.A., Lietaert K., Weinans H.H., Zadpoor A.A. Rationally designed meta-implants: A combination of auxetic and conventional meta-biomaterials. Materials Horizons. 2018;5(1):28–35.
  • 18. Krolikowski T., Knitter R., Blazejewski A. Computer modeling and testing of structural metamaterials. Procedia Computer Science. 2019;159(October):2543–50.
  • 19. Zadpoor A.A. Mechanical performance of additively manufactured meta-biomaterials. Acta Biomaterialia. 2019;85:41–59.
  • 20. Dogan E., Bhusal A., Cecen B., Miri A.K. 3D Printing metamaterials towards tissue engineering. Applied Materials Today. 2020;20:100752.
  • 21. Yang H., Ma L. Design and characterization of axisymmetric auxetic metamaterials. Composite Structures. 2020;249(March).
  • 22. Li S., Hou Y., Huang J., Shi J., Meng L. Exploring the enhanced energy-absorption performance of hybrid polyurethane(PU)-foam-filled lattice metamaterials. International Journal of Impact Engineering. 2024;193(April):105058.
  • 23. Boldrin L., Hummel S., Scarpa F., Di Maio D., Lira C., Ruzzene M., et al. Dynamic behaviour of auxetic gradient composite hexagonal honeycombs. Composite Structures. 2016;149:114–24.
  • 24. Mazloomi M.S., Ranjbar M., Boldrin L., Scarpa F., Patsias S., Ozada N. Vibroacoustics of 2D gradient auxetic hexagonal honeycomb sandwich panels. Composite Structures. 2018;187(August 2017):593–603.
  • 25. Anigbogu W., Nguyen H., Bardaweel H. Layered metamaterial beam structures with local resonators for vibration attenuation: Model and experiment. Frontiers in Mechanical Engineering. 2021;7(October):1–13.
  • 26. Pires F.A., Sangiuliano L., Denayer H., Deckers E., Desmet W., Claeys C. The use of locally resonant metamaterials to reduce flow-induced noise and vibration. Journal of Sound and Vibration. 2022;535(November 2021):117106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9768660-4cc0-43f9-b740-cb310c633470
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.