PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification System from Optical Coherence Tomography Using Transfer Learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aims to create a decision support system to identify retinal diseases using a four-class classification problem. To achieve this, the proposed system uses deep learning architecture to automatically recognize CNV, DME, and drusen from OCT images. The model employs two transfer learning architectures with several additional layers to classify retinal diseases. The purpose of model training, validation, and testing, the experiment uses 6,000 grayscale images labeled into four classes from the OCT data set. The Inception V3 model's proposed additional layer exhibits an increase in accuracy of 3.08% and a reduction in the loss by 0.3767. The experiment's results indicate that the Inception V3 model achieved an accuracy rate of 99.31%, and the VGG-16 model reached 98.83%, which outperformed other deep learning models using the OCT data set.
Twórcy
Bibliografia
  • [1] W. L. Wong et al., “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040 : a systematic review and meta-analysis,” Lancet Glob. Heal., vol. 2, no. 2, pp. e106-e116, 2020.
  • [2] E. A. Swanson and J. G. Fujimoto, “The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited],” Biomed. Opt. Express, vol. 8, no. 3, p. 1638, 2017.
  • [3] N. Ferrara, “Vascular endothelial growth factor and age-related macular degeneration: From basic science to therapy,” Nat. Med., vol. 16, no. 10, pp. 1107-1111, 2010.
  • [4] M. R. Hee et al., “Optical Coherence Tomography of the Human Retina,” Arch. Ophthalmol., vol. 113, no. 3, pp. 325-332, 1995.
  • [5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2323, 1998. https://doi.org/10.1109/5.726791
  • [6] M. Asvial and M. A. Laagu, “New Development of Physarum Routing Algorithm with Adaptive Power Control,” IEEE Access, vol. 9, pp. 74868-74878, 2021. https://doi.org/10.1109/ACCESS.2021.3065036
  • [7] C. S. Lee, D. M. Baughman, and A. Y. Lee, “Deep Learning Is Effective for Classifying Normal versus Age-Related Macular Degeneration OCT Images,” Ophthalmol. Retin., vol. 1, no. 4, pp. 322-327, Jul. 2017.
  • [8] G. C. Y. Chan, A. Muhammad, S. A. A. Shah, T. B. Tang, C. K. Lu, and F. Meriaudeau, “Transfer learning for Diabetic Macular Edema (DME) detection on Optical Coherence Tomography (OCT) images,” in Proceedings of the 2017 IEEE International Conference on Signal and Image Processing Applications, ICSIPA 2017, 2017, pp. 493-496. https://doi.org/10.1109/ICSIPA.2017.8120662
  • [9] T. Tsuji et al., “Classification of optical coherence tomography images using a capsule network,” BMC Ophthalmol., vol. 20, no. 1, pp. 1-9, Mar. 2020.
  • [10] M. A. Laagu and M. Asvial, “The Physarum Algorithm with Adaptive Power Control: A Routing Optimization to Overcome Obstacle Problems in IoT Network,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1077, no. 1, p. 012054, 2021.
  • [11] A. Bhowmik, S. Kumar, and N. Bhat, “Eye disease prediction from optical coherence tomography images with transfer learning,” Commun. Comput. Inf. Sci., vol. 1000, pp. 104-114, 2019.
  • [12] A. Adel, M. M. Soliman, N. E. M. Khalifa, and K. Mostafa, “Automatic Classification of Retinal Eye Diseases from Optical Coherence Tomography using Transfer Learning,” 16th Int. Comput. Eng. Conf. ICENCO 2020, pp. 37-42, Dec. 2020.
  • [13] A. Sancho, S. Johnen, S. Recalde, N. Gama, G. Thumann, and J. Groll, “Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering,” vol. 2014, 2020.
  • [14] H. Gu, Y. Wang, S. Hong, and G. Gui, “Blind channel identification aided generalized automatic modulation recognition based on deep learning,” IEEE Access, vol. 7, pp. 110722-110729, 2019. https://doi.org/10.1109/ACCESS.2019.2934354
  • [15] Y. Bengio, Learning deep architectures for AI, vol. 2, no. 1. 2009.
  • [16] L. Breiman, “Statistical modeling: The two cultures,” Stat. Sci., vol. 16, no. 3, pp. 199-215, 2001.
  • [17] S. Sakib, Ahmed, A. Jawad, J. Kabir, and H. Ahmed, “An Overview of Convolutional Neural Network: Its Architecture and Applications,” ResearchGate, no. November, 2018. https://doi.org/10.20944/preprints201811.0546.v1
  • [18] “Retinal OCT Images (optical coherence tomography) | Kaggle.” [19] M. Treder, J. L. Lauermann, and N. Eter, “Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning,” Graefes Arch. Clin. Exp. Ophthalmol., vol. 256, no. 2, pp. 259-265, Feb. 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9738f0a-8d76-445c-8d92-1fb23dbf02a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.