PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the mechanism and kinetics of sulfuric acid leaching scandium from rich scandium anatase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scandium and its compounds have excellent properties, and are widely used in cutting-edge fields such as optics, electronics, and alloys. Thus, scandium is an important strategic metal. However, scandium is extremely sparsely distributed in the earth's crust, rarely occurs as an independent mineral, and requires a complex recovery process. Therefore, the study of the extraction of scandium is of great practical significance. This study examined the leaching test and kinetics of scandium under the acid leaching system of refractory anatase ore. Under appropriate two-stage countercurrent leaching conditions, the first stage of the particle size of fraction of -0.074 mm 82.6%, initial H2SO4 concentration of 6 mol/L, leaching temperature of 100 °C, acid/solid ratio of 3 ml/g, stirring speed of 300 rpm, and leaching time of 50 min; and the second stage of the initial H2SO4 concentration of 11 mol/L, leaching temperature of 150 °C, acid/solid ratio of 4 ml/g, stirring speed of 300 rpm, and leaching time of 50 min, a scandium leaching rate of 96.98% was achieved. The kinetics of scandium leaching conformed to a shrinking-core model, and sulfuric acid concentration and temperature were the most important parameters affecting the scandium leaching rate. The kinetic analysis of scandium leaching at different sulfuric acid concentrations showed that as the concentration increased, the sulfuric acid leaching of scandium changed from being chemical reaction-controlled to internal diffusion-controlled, and the apparent reaction order was 1.2429. The kinetics of scandium leaching at different temperatures showed that the sulfuric acid leaching of scandium was reaction-controlled and the apparent activation energy was 42.21 kJ-mol-1.
Słowa kluczowe
Rocznik
Strony
art. no. 146171
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, 68 Wenchang, Road, 121 Str., Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, 68 Wenchang, Road, 121 Str., Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, 68 Wenchang, Road, 121 Str., Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, 68 Wenchang, Road, 121 Str., Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, 68 Wenchang, Road, 121 Str., Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, 68 Wenchang, Road, 121 Str., Kunming, Yunnan 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, 68 Wenchang, Road, 121 Str., Kunming, Yunnan 650093, China
Bibliografia
  • AYDOGAN, S., ARAS, A ., CANBAZOGLU, M., et al., 2005. Dissolution kinetics of sphalerite in acidic ferric chloride leaching.J. Chemical Engineering Journal. 114(1-3), 67-72.
  • AQUILANTI, V., MUNDIM, K. C., ELANGO, M., KLEIJN, S., KASAI, T., 2010. Temperature dependence of chemical and biophysical rate processes, Phenomenological approach to deviations from Arrhenius law. Chem. Phys. Lett. 498, 209–213.
  • ANAWATI, J., GISELE., et al., 2019. Recovery of scandium from Canadian bauxite residue utilizing acid baking followed by water leaching – ScienceDirect.J. Waste Management. 95, 549-559.
  • ALKAN, G ., YAGMURLU, B ., CAKMAKOGLU, S ., et al., 2018. Novel Approach for Enhanced Scandium and Titanium Leaching Efficiency from Bauxite Residue with Suppressed Silica Gel Formation.J. Scientific Reports. 8(1), 5676.
  • ALKAN, G ., YAGMURLU, B ., GRONEN, L ., et al., 2019. Selective silica gel free scandium extraction from Iron-depleted red mud slags by dry digestion.J.. Hydrometallurgy, 185.
  • BORRA, C, R, PONTIKES, Y, BINNEMANS, K, VAN, GERVEN, T. et al., 2015.Leaching of rare earths from bauxite residue (red mud). Miner Eng 76, 20–27.
  • BORRA, C, R ., et al., 2016.Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. J. Minerals Engineering. 92, 151-159.
  • DAVRIS, P., STOPIC, S., BALOMENOS, E., PANIAS, D., PASPALIARIS, I., FRIEDRICH, B., 2017. Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Miner. Eng. 108, 115–122.
  • EBADI, H., POURGHAHRAMANI, P., 2019. Effects of mechanical activation modes on microstructural changes and reactivity of ilmenite concentrate. Hydrometallurgy 188, 38–46.
  • GAO, L., RAO, B., DAI, H., et al., 2019. Kinetics of sulphuric acid leaching of titanium from refractory anatase under atmospheric pressure. Physicochem. Probl. Miner. Process. 55, 467–478.
  • GEORGIOU, D., PAPANGELAKIS, V. G., 1998. Sulphuric acid pressure leaching of a limonitic laterite, Chemistry and kinetics. Hydrometallurgy 49, 23–46.
  • PURCELL, W., SINHA, M. K., VILAKAZI, A. Q., NETE, M., 2020. Selective precipitation study for the separation of iron and titanium from ilmenite. Hydrometallurgy 191, 105242.
  • KALINKIN, A. M., KALINKINA, E. V., 2011. Modelling of the sulphuric acid leaching of mechanically activated titanite. Hydrometallurgy 108, 189–194.
  • KIM, J., AZIMI, G., 2020. An innovative process for extracting scandium from nickeliferous laterite ore, Carbothermic reduction followed by NaOH cracking. Hydrometallurgy 191, 105194.
  • LEBEDEV, V. N., 2003. Sulfuric acid technology for processing of eudialyte concentrate. Russ. J. Appl. Chem. 76, 1559–1563.
  • LEVENSPIEL, O., 1999. Chemical reaction engineering. Ind. Eng. Chem. Res. 38, 4140–4143.
  • LIU, Z ., ZONG, Y ., LI, H, X., et al., 2017. Selectively recovering scandium from high alkali Bayer red mud without impurities of iron, titanium and gallium. J. Rare Earths, 35(009), 896-905.
  • LI D ., YONG, Z ., MENG, S., et al., 2004.Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method.J. Journal of Alloys and Compounds.374( 1–2), 431-433.
  • LI, C., LIANG, B., GUO, L. H., 2007. Dissolution of mechanically activated Panzhihua ilmenites in dilute solutions of sulphuric acid. Hydrometallurgy 89, 1–10.
  • LI, H., CAO, F., GUO, S., NING, Z., LIU, Z., JIA, Y., et al., 2017. Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition. J. Alloys Compd. 691, 482–488.
  • LI, S, C ., KIM, S ,C ., KANG, C, S., 2019.Recovery of scandium from KOH sub-molten salt leaching cake of fergusonite. J. Minerals Engineering, 137, 200-206.
  • LUO Y , X., CHEN, Z, Z., et al.,2021. Pressure leaching of wolframite using a sulfuric-phosphoric acid mixture.J. Minerals Engineering, 169, 106941.
  • ONGHENA, B., BORRA, C. R., VAN GERVEN, T., BINNEMANS, K., 2017. Recovery of scandium from sulfation- roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Sep. Purif. Technol. 176, 208–219.
  • PARHI, P. K., PARK, K. H., NAM, C. W., PARK, J. T., 2015. Liquid–liquid extraction and separation of total rare earth (RE) metals from polymetallic manganese nodule leaching solution. J. Rare Earths 33, 207–213.
  • QIN, S., WEI, C., LI, M, T., ZHOU, X, J., LI, C, X., DENG, Z, G. et al., 2011.Dissolution kinetics of vanadium trioxide at high pressure in sodium hydroxide–oxygen systems. J. Hydrometallurgy.
  • RAMASAMY, D. L., PUHAKKA, V., REPO, E., SILLANPÄÄ, M., 2018. Selective separation of scandium from iron, aluminium and gold rich wastewater using various amino and non-amino functionalized silica gels – A comparative study. J. Cleaner Prod. 170, 890–901.
  • REID, S., TAM, J., YANG, M., AZIMI, G., 2017. Technospheric mining of rare earth elements from bauxite residue (red mud), Process optimization, kinetic investigation, and microwave pretreatment. Sci. Rep. 7, 15252.
  • RIVERA, R. M., ULENAERS, B., OUNOUGHENE, G., BINNEMANS, K., VAN GERVEN, T., 2018. Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Miner. Eng. 119, 82–92.
  • RIVERA, R. M., ULENAERS, B., OUNOUGHENE, G., et al., 2019.Selective rare earth element extraction using high-pressure acid leaching of slags arising from the smelting of bauxite residue.J. Hydrometallurgy. 184, 162-174.
  • SHENGFENG, M., 2012. Study on extraction technology of scandium from the Bayanobo tailings [D], Inner Mongolia University.US Geological Survey, 2019. Mineral commodity summaries.
  • STEPANOV, S.I., P'Ei, K ., BOYARINTSEV, A.V., et al., 2018. Use of Machining to Increase the Recovery of Scandium from Refractory Silicate Raw Material.J. Theoretical Foundations of Chemical Engineering, 52(5), 898-902.
  • XIONG, X. H., WANG, Z. X., WU, F. X., LI, X. H., GUO, H. J., 2013. Preparation of TiO2 from ilmenite using sulfuric acid decomposition of the titania residue combined with separation of Fe3+ with EDTA during hydrolysis. Adv. Powder Technol. 24, 60–67.
  • XIA, Z, M ., TANG, M, T ., YANG, S, H ., et al., 2015. Materials balance of pilot-scale circulation leaching of low-grade zinc oxide ore to produce cathode zinc.J. Canadian Metallurgical Quarterly. 54, 439-445,
  • ZAKHAROV, V. I., MAIOROV, D. V., ALISHKIN, A. R., MATVEEV, V. A., 2011. Causes of insufficient recovery of zirconium during acidic processing of lovozero eudialyte concentrate. Russ. J. Non-ferrous Metals 52, 423–428.
  • ZHANG, J., EDWARDS, C., 2013. Mineral decomposition and leaching processes for treating rare earth ore concentrates. Can. Metall. Q. 52, 243–248.
  • ZHANG, N., LI, H. X., LIU, X. M., 2016. Recovery of scandium from bauxite residue-red mud, A review. Rare Met. 35, 887–900.
  • ZHANG, W., ZHU, Z., CHENG, C. Y., 2011. A literature review of titanium metallurgical processes. Hydrometallurgy 108, 177–188.
  • ZHANG, Y., HUA, Y., GAO, X., XU, C., LI, J., LI, Y., et al., 2016. Recovery of zinc from a low-grade zinc oxide ore with high silicon by sulfuric acid curing and water leaching. Hydrometallurgy 166, 16–21.
  • ZHANG, Y., ZHAO, H., SUN, M., ZHANG, Y., MENG, X., ZHANG, L. et al., 2020. Scandium extraction from silicates by hydrometallurgical process at normal pressure and temperature. J. Mater. Res. Technol. 9, 709–717.
  • ZHANG, G, F ., YAN, P ., YANG, Q, R., 2013. Experimental Study on Concentrating Scandium by Leaching from Associated Scandium Ore.J. Advanced Materials Research. 734-737, 1033-1036.
  • ZHANG, S.H., LI, T., ZHU, B.C., ZHU, Z.B., et al., 2005. Gas–liquid mass transfer in three-phase mechanical agitated reactor. J. Chem. Ind. Eng. 56, 200-226.
  • ZHU, X ., ZHANG, Y ., HUANG, J ., et al., 2012 .A kinetics study of multi-stage counter-current circulation acid leaching of vanadium from stone coal.J. International Journal of Mineral Processing. 114–117, 1-6.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9720472-5e20-44f7-a3b6-a4ec56209a08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.