PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo analysis of the battery-type high temperature gas cooled reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.
Słowa kluczowe
PL
HTGR   HTR   Monte Carlo   wąż   SMR   bateria   rodzaj  
Rocznik
Strony
209–--227
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
Bibliografia
  • [1] World Nuclear Association: http://www.woorld-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx (accessed 5 Oct. 2017).
  • [2] Nuclear Energy Institute: https://www.nei.org/Knowledge-Center/Nuclear-Statistics/World-Statistics (accessed 05 Oct. 2017).
  • [3] International Nuclear Energy Agency: Advances in small modular reactor technology developments. IAEA, Vienna 2014.
  • [4] International Nuclear Energy Agency: Approaches for Assessing the Economic Competitiveness of Small and Medium Sized Reactors. IAEA Nuclear Energy Ser. NP-T-3.7, 2013.
  • [5] Rowiński M.K., White T.J., Zhao J.: Small and medium sized reactors (SMR): A review of technology. Renewable and Sustainable Energy Rev. 44(2015), 643-656.
  • [6] NNL: Small Modular Reactors (SMR) Feasibility Study. National Nuclear Laboratory Rep., Dec. 2014.
  • [7] Ding M., Kloosterman J.L., Kooijman T., Linssen R., Abram T., Marsden B., Wickham T.: Design of U-Battery. Delft, 2011.
  • [8] World Nuclear Association: http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx (accessed 05 Oct. 2017).
  • [9] Ding M., Kloosterman J.L.: Neutronic feasibility design of a small long-life HTR. Nucl. Eng. Des. 241(2011), 12, 5093-5103.
  • [10] Ding M., Kloosterman J.L.: Thermal-hydraulic design and transient evaluation of a small long-life HTR. Nucl. Eng. Des. 255(2013), 347-358.
  • [11] High temperature Gas Cooled Reactor Fuels and Material. IAEA, 2010.
  • [12] Gas turbine-modular helium reactor (GT-MHR) conceptual design description report. Tech. Rep., General Atomics, 1996.
  • [13] Zwaan S.J. de: Feasibility Study of the U-Battery, PNR-131-2007-004, 2007.
  • [14] History and Evolution of the HTGR. General Atomic, 2007.
  • [15] IAEA Current status and future development of modular high temperature gas cooled reactor technology. IAEA, 2001.
  • [16] Prismatic coupled neutronic/thermal fluids transient benchmark of the MHTGR MW core design, Benchmark definition 2011.
  • [17] Ortensi J., Cogliati J.J., Pope M.A., Bess J.D., Ferrer R.M., Bingham A.A., Ougouag A.M.: Deterministic Modeling of the High Temperature Test Reactor. INL Rep., 2010.
  • [18] Leppänen J.: Serpent – A Continuous-Energy Monte Carlo Reactor Physics Burnup Calculation Code, Manual, 2015.
  • [19] Kaltiaisenaho T.: Statistical Tests and the Underestimation of Variance in Serpent 2, Res. Rep., 2014.
  • [20] Samul K., Strupczewski A., Wrochna G.: Small Modular Reactors (SMR). Rap. National Centre for Nuclear Research, Świerk 2013.
  • [21] National Centre for Nuclear Research: https://www.ncbj.gov.pl/pl/aktualnosci/ncbj-planuje-budowe-badawczego-reaktora-nowej-generacji (accessed 05 Oct. 2017).
  • [22] Leppänen J.: Development of a New Monte Carlo Reactor Physics Code. D.Sc. Thesis, VTT Publication 640, Helsinki University of Technology, 2007.
  • [23] SERPENT Monte Carlo Code Development Status: http://montecarlo.vtt.fi/development (accessed 30 Aug. 2017).
  • [24] Stanisz P., Malicki M., Kopeć M.: Validation of VHTRC calculation benchmark of critical experiment using the MCB code. SEED 2016 Conf., E3S Web of Conf. 10, 00123, 2016.
  • [25] Brown F.B., Matrin W.R., Jei W., Conlin J.L., Lee J.C.: Stochastic Geometry and HTGR Modeling with MCNP5. Los Alamos National Laboratory Rep. LA-UR-04-8668, 2005.
  • [26] Brown F.B.: A Review of Best Practices for Monte Carlo Criticality Calculations. Los Alamos National Laboratory Rep. LA-UR-09-03134, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f971429c-7242-4afe-a6b9-8d53ad707b5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.