PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasonic treatment of baker’s yeast effluent using SnO2/TiO2 composite

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, ultrasonic treatment of baker’s yeast effluent was investigated in an ultrasonic homogenizer emitting waves at 20 kHz. The SnO2 /TiO2  composites were used as a sonocatalyst to assist the sonication process. Decolorization and chemical oxygen demand (COD) removal of baker’s yeast effluent with ultrasonic irradiation was examined. The effect of the composite preparation method, the molar ratio of SnO2 /TiO2  mixing time while the composite was prepared, the calcination temperature and time, the catalyst amount were investigated. The decolorization was higher at a 4:1 molar ratio of the SnO2 /TiO2  composite prepared by using an ultrasonic probe and 6 min ultrasonic irradiation time. The decolorization increased, with an increase in the calcination temperature. The optimum calcination time was 60 min and catalyst amount was 0.2 g/l. According to the results, decolorization rate was 26.63% using this composite. There was no COD removal at the studied conditions.
Rocznik
Strony
26--32
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Hitit University, Department of Chemical Engineering, Faculty of Engineering, Çorum, Turkey
autor
  • Hitit University, Department of Chemical Engineering, Faculty of Engineering, Çorum, Turkey
Bibliografia
  • 1. Dukkancı, M. & Gunduz, G. (2013). Sonolytic degradation of butyric acid in aqueous solutions. J. Env. Management 129, 564–568. DOI: 10.1016/j.jenvman.2013.08.024.
  • 2. Guo, Z., Feng, R., Li, J., Zheng, Z. & Zheng, Y. (2008). Degradation of 2,4-dinitrophenol by combining sonolysis and different additives. J. Hazard Mater. 158, 164–169. DOI: 10.1016/j.jhazmat.2008.01.056.
  • 3. Guzman-Duque, F., Petrier, C., Pulgarin, C., Penuela, G. &Torres-Palma, A. (2011). Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultr. Sonochem. 18, 440–446. DOI: 10.1016/j.ultsonch.2010.07.019.
  • 4. Pang, Y.L., Abdullah, A.Z. & Bhatia, S. (2011). Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 277, 1–14. DOI: 10.1016/j.desal.2011.04.049.
  • 5. Merouani, S., Hamdaoui, O., Saoudi, F. & Chiha, M. (2010). Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives. Chem. Eng. J.158, 550–557. DOI: 10.1016/j.cej.2010.01.048.
  • 6. Suslick, K.S. (1989). The chemical effects of ultrasound. Sci. Am. 260(82), 80–86.
  • 7. Xie, W., Qin, Y., Liang, D., Song, D. & He, D. (2011). Degradation of m-xylene solution using ultrasonic irradiation. Ultr. Sonochem. 18, 1077–1081. DOI: 10.1016/j.ultsonch.2011.03.014.
  • 8. Eren, Z. (2012). Ultrasound as a basic and auxiliary process for dye remediation: A review. J. Env. Manage. 104, 127–141. DOI: 10.1016/j.jenvman.2012.03.028.
  • 9. Gao, J., Jiang, R., Wang, J., Kang, P., Wang, B., Li, Y., Li, K. & Zhang, X. (2011). The investigation of sonocatalytic activity of Er3+:YAlO3/TiO2-ZnO composite in azo dyes degradation. Ultr. Sonochem. 18, 541–548. DOI: 10.1016/j.ultsonch.2010.09.012.
  • 10. Gao, J., Jiang, R., Wang, J., Wang, B., Li, K., Kang, P., Li, Y. & Zhang, X. (2011). Sonocatalytic performance of Er3+:YAlO3/TiO2–Fe2O3 in organic dye degradation. Chem.l En.g J. 168, 1041–1048. DOI: 10.1016/j.cej.2011.01.079.
  • 11. Abdullah, A.Z. & Ling, P.Y. (2010). Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution. J. Hazard Mater. 173, 159–167. DOI: 10.1016/j.hazmat.2009.08.060.
  • 12. Jamalluddin, N.A. & Abdullah, A.Z. (2011). Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature. Ultr. Sonochem. 18, 669–678. DOI: 10.1016/j.ultsonch.2010.09.004.
  • 13. Ahmad, M., Ahmed, E., Hong, Z.L., Ahmed, W., Elhissi, A. & Khalid, N.R. (2014). Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultr. Sonochem. 21, 761–773. DOI: 10.1016/j.ultsonch.2013.08.014.
  • 14. Anju, S.G., Jyothi, K.P., Joseph, S., Suguna, Y. & Yesodharan, E.P. (2012). Ultrasound assisted semiconductor mediated catalytic degradation of organic pollutants in water: Comparative efficacy of ZnO, TiO2 and ZnO-TiO2. Res. J. Rec. Scien. 1, 191–201.
  • 15. Wang, J., Jiang, Z., Zhang, L., Kang, P., Xie, Y., Lv, Y., Xu, R. & Zhang, X. (2009). Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano sized TiO2, nano sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation. Ultr. Sonochem. 16, 225–231. DOI: 10.1016/j.ultsonch.2008.08.005.
  • 16. Wang, J., Lv, Y., Zhang, L., Liu, B., Jiang, R., Han, G., Xu, R. & Zhang, X. (2010). Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation. Ultr. Sonochem. 17, 642–648. DOI: 10.1016/j.ultsonch.2009.12.016.
  • 17. Zeng, Y.F., Liu, Z.L. & Qin, Z.Z. (2009). Decolorization of molasses fermentation wastewater by SnO2-catalyzed ozonation. J. Hazard Mater. 162, 682–687. DOI: 10.1016/j.jhazmat.2008.05.094.
  • 18. Pala, A. & Erden, G. (2005). Decolorization of a baker’s yeast industry effluent by Fenton oxidation. J. Hazard Mater. B127, 141–148. DOI: 10.1016/j.jhazmat.2005.06.033.
  • 19. Pena, M., Coca, M., Gonzalez, G., Rioja, R. & Garcia, M.T. (2003). Chemical oxidation of wastewater from molasses fermantation with ozone. Chemosphere 51, 893–900. DOI: 10.1016/S0045-6535(03)00159-0.
  • 20. Zhou, Y., Liang, Z. & Wang, Y. (2008). Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate. Desalination 225, 301–311. DOI: 10.1016/j.desal.2007.07.010.
  • 21. Verma, A.K., Raghukumar, C. & Naik, C.G. (2011). A novel hybrid technology for remediation of molasses-based raw effluents. Biores. Techn.102, 2411–2418. DOI: 10.1016/j.biortech.2010.10.112.
  • 22. Liang, Z., Wang, Y., Zhou, Y. & Liu, H. (2009). Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride. Chem. Eng J. 52, 88–94. DOI: 10.1016/j.cej.2009.03.036.
  • 23. Liang, Z., Wang, Y., Zhou, Y., Liu, H. & Wu, Z. (2009). Variables affecting melanoidins removal from molasses wastewater by coagulation/flocculation. Sep. Pur. Techn. 68, 382–389. DOI: 10.1016/j.seppur.2009.60011.
  • 24. Sangave, P.C. & Pandit, A.B. (2004). Ultrasound pre-treatment for enhanced biodegradability of the distillery wastewater. Ultr. Sonochem. 11, 197–203. DOI: 10.1016/j.ultsonch.2004.01.026.
  • 25. Sangave, P.C. & Pandit, A.B. (2006). Ultrasound and enzyme assisted biodegradation of distillery wastewater. J. Env. Manage. 80, 36–46. DOI: 10.1016/j.jenvman.2005.08.010.
  • 26. Sangave, P.C., Gogate, P.R. & Pandit, A.B. (2007). Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosphere 68, 42–52. DOI: 10.1016/j.chemosphere.2006.12.052.
  • 27. Padoley, K.V., Saharan, V.K., Mudliar, S.N., Pandey, R.A. & Pandit, A.B. (2012). Cavitationally induced biodegradability enhancement of a distillery wastewater. J. Hazard Mater. 219–220, 69–74. DOI: 10.1016/j.jhazmat.2012.03.054.
  • 28. Zhang, H., Duan, L. & Zhang, D. (2006). Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation. J. Hazard Mater. B138, 53–59. DOI: 10.1016/j.jhazmat.2006.05.034.
  • 29. Yılmaz, E. (2014). Maya endüstrisi atıksuyunun ses ötesi dalgalarla arıtılması. M.Sc. Chemical engineering department, Hitit University, Corum, Turkey.
  • 30. Gogate, P.R., Katekhaye, S.N. (2012). A comparison of the degree of intensification due to the use of additives in ultrasonic horn and ultrasonic bath. Chem. Eng. Process. Process. Int. 61, 23–29. DOI: 10.1016/j.cep.2012.06.016.
  • 31. Talebian, N., Nilforoushan, M.R. & Mogaddas, F.J. (2013). Comparative study on the sonophotocatalytic degradation of hazardous waste. Cer. Intern. 39(5), 4913–4921. DOI: 10.1016/j.ceramint.2012.11.085.
  • 32. Wang, J., Pan, Z., Zhang, Z., Zhang, X., Jiang, Y., Ma, T., Wen, F., Li, Y. & Zhang, P. (2007). The investigation on ultrasonic degradation of acid fuchsine in the presence of ordinary and nanometer rutile TiO2 and the comparison of their sonocatalytic activities. Dyes Pigm. 74, 525–530. DOI: 10.1016/j.dyepig.2006.03.010.
  • 33. Ildırar, D. & Fındık, S. (2016). Effect of operational parameters on ultrasonic treatment of baker’s yeast effluent. Sakarya Uni. J. Sci. 20(2), 185–191.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f96fb569-21c9-444e-9fb0-f00d893db2e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.