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Abstract
Constructing textile defect detection systems is significant for quality control in industrial 
production, but it is costly and laborious to label sufficient detailed samples. This paper 
proposes a model called ‘spatial adversarial convolutional neural network’ which tries to 
solve the problem above by only using the image-level label. It consists of two parts: a fe-
ature extractor and feature competition. Firstly, a string of convolutional blocks is used as 
a feature extractor. After feature extraction, a maximum greedy feature competition is taken 
among features in the feature layer. The feature competition mechanism can lead the network 
to converge to the defect location. To evaluate this mechanism, experiments were carried 
on two datasets. As the training time increases, the model can spontaneously focus on the 
actual defective location, and is robust towards an unbalanced sample. The classification 
accuracy of the two datasets can reach more than 98%, and is comparable with the method 
of labelling samples in detail. Detection results show that defect location from the model 
is more compact and accurate than in the Grad-CAM method. Experiments show that our 
model has potential usage in defect detection in an industrial environment.
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in nanoproducts [4]. In [5] a framework 
based on a template-matching strategy 
was constructed to detect defects. Al-
though these human-engineered features 
perform well in specific tasks, feature 
extraction algorithms often need to be 
redesigned when extended to other tasks.
 
Recently, CNN has achieved break-
throughs in many computer vision tasks. 
Many CNN based methods have also 
achieved considerable success in defect 
detection for several application sce-
narios. In [6] an end-to-end CNN classi-
fier was trained to distinguish defective 
or defect-free image patches, and it used 
a sliding window to move over the whole 
image to classify every patch. Ali et al. 
extracted features using discrete cosine 
transform (DCT) and then trained a neu-
ral network to classify [7]. Paul et al. used 
an autoencoder with a perceptual loss 
function based on structural similarity to 
segment defective and defect-free pix-
els directly from images of nanofibrous 
materials [8]. Lin et al. proposed a class 
activation mapping (CAM) technique 
to localise defect regions without using 
region-level human annotation [9]. Tao et 
al. proposed a novel deep CNN (DCNN) 
cascading architecture for performing 
localisation and detecting defects in in-
sulators [10]. Qin et al. fused the convo-
lutional features in both the encoder and 
decoder networks and constructed a new 
DeepCrack network for crack detection 
[11]. Chen et al. cascaded three DCNN-
based detection stages in a coarse-to-fine 
manner and achieved a high detection 
rate with good adaptation and robustness 

	 Introduction
Textile defect detection is crucial to qual-
ity control in industrial production. Tradi-
tionally, the main approach for inspectors 
to find defects in textile is with their eyes, 
which is usually harmful to inspectors’ 
eyesight under strong illumination. Thus, 
intelligent visual systems have been used 
in many production lines to perform au-
tomatic defect detection. These automat-
ic defect detection technologies not only 
allow people to get rid of laborious and 
repetitive work but also greatly improve 
the efficiency of quality control. 

Nowadays, existing defect detection 
methods can be mainly classified into 
two categories: classical approaches 
and the recently popular CNN (convo-
lutional neural network) models. Clas-
sical approaches mainly rely on human-
engineered features and traditional clas-
sification methods according to specific 
application scenarios. Li et al. proposed 
the Gabor-HOG method to extract di-
rection-aware descriptors, and combined 
with low-rank matrix decomposition, 
locate defects on fabric [1]. Huang et al. 
introduced an unsupervised method us-
ing a low-rank representation based on 
texture prior to the detection of defects 
on natural surfaces and formulated the 
detection process as a novel weighted 
low-rank reconstruction model [2]. Pe-
dro et al. used entropy-based automatic 
selection of the wavelet decomposition 
level and wavelet reconstruction to detect 
defects in textures [3]. Carrera et al. used 
sparse representations to detect defects 

in complex environments [12]. In [13], 
Yu et al. presented a novel 2-stage FCN 
(fully convolutional networks) frame-
work for surface defect inspection in in-
dustrial environments and combined the 
segmentation and detection tasks.

In the aforementioned CNN-based meth-
ods, the defect detection process is con-
structed as an object detection task or 
an instance segmentation task. In the 
object detection task, a tight bounding 
box needs to be marked around the de-
fect. In the image segmentation task, it is 
necessary to mark each defective pixel in 
the image. Examples of defect label are 
shown in Figure 1.

Since CNN is a data-driven approach, 
a large number of correctly labeled 
samples are needed to train a deep CNN 
model [14]. However, in actual industrial 
scenarios, it is costly and laborious to 
acquire sufficient labeled images in in-
dustrial environments. Moreover, expe-
rienced inspectors rarely label samples, 
and there are also differences in labelling 
results among different inspectors. Thus, 
there is the question: can defects be de-
tected and located only by means of the 
image-level label (defective or defect-
free) without complex label information. 
In order to deal with the question above, 
we propose a new model called ‘spatial 
adversarial convolutional neural net-
work’ (SACNN). In this model, based 
on two properties of CNN, we firstly use 
some stacked convolutional layers as 
a feature extractor. Features in the higher 
layer not only have a larger visual field 
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that can cover the entire defect, but they 
also keep the original spatial relation 
among one another. Then, the last layer 
of the feature extractor is classified in 
every position. After that, a maximum 
greedy competition is taken among these 
classification results inside a sample, and 
the model can spontaneously focus on the 
actual defective position. Experiments on 
two datasets show that our model has po-
tential usage in defect detection.

Contributions of this work are as follows:
n	 A spatial adversarial convolutional 

neural network is proposed for tex-
tile defect detection. The model only 
uses the image-level label (defective 
or defect-free) and can spontaneous-
ly focus on the position of the defect 
through spatial competition;

n	 Experiments on two datasets show 
that our model is robust towards un-
balanced samples between the de-
fect-free and the defective, which is 
faced in real industrial conditions; 
thus, our model has potential for us-
age in defect detection.

The remainder of this paper is organised 
in three sections: the following section 
introduces the intuitions behind SACNN 
and describes the structure of our model 
in detail; in the next section experiments 
were carried out on two datasets to verify 
the feasibility of our model and exhaus-
tive discussion is held, and finally con-
clusions are drawn in last section.

	 Spatial Adversarial 
Convolutional Neural Network 
(SACNN)

In recent years, CNN has achieved fan-
tastic success in various computer vision 
tasks. While it achieves superior perfor-
mance, it is hard to interpret because of 
a lack of decomposability into intuitive 
and understandable components [15]. 
The mechanism of CNN has drawn much 
research attention, and some researchers 
have shown some insights into CNN. In 
this section, we will discuss two proper-
ties of CNN which are close to our mod-
el, and then based on them we will build 
our SACNN model for defect detection.

Two properties of CNN
CNN is a kind of neural network. There-
fore, in theory, CNN can fit any kind 
of function, and it has a local property. 
When training a network using the gra-
dient descent method, every step to re-
vise the parameter mainly affects a small 
neighborhood of the output [16]. Another 
property is that the neurons in CNN are 
not fully connected, with every neuron in 
hidden layers having its own visual field 
in the input image, which can be consid-
ered as a feature extractor [17, 18]. Some 
object detection models detect objects by 
sliding bounding boxes over the feature 
map, then they make a classification of 
features in the bounding box, as illus-
trated in Figure 2, and reiterate these two 
properties as follows:
n	 Using the gradient descent method 

to train a CNN, every step to revise 
the parameter mainly affects a small 
neighborhood of the output, while 
other regions change little;

n	 CNN can be seen as a generic feature 
extractor, with every feature having its 
corresponding visual field in the input 
image.

Defect detection faces the problem that 
the defect region usually takes a small 
part of the entire image, and this small 
part can make the whole image a defect 
class. Hence, every part of the image 
should be considered to decide whether 
it is defective or defect-free. In addition, 
samples collected are far from balanced. 
Usually, the number of defect-free sam-
ples is much larger. Using the two prop-
erties of CNN above, we can conduct 
a trial to solve the problem of defect de-
tection by proposing spatial adversarial 
convolutional neural networks.

Spatial Adversarial Convolutional 
Neural Network (SACNN)
Structure of SACNN is shown in Fig-
ure 3. It contains two parts: a feature 
extractor and feature competition. It uses 
convolutional layers to extract features, 
and the spatial information is preserved. 
Every feature is mapped to a specific re-
gion of the input image. In defect-free 
samples, all features extracted from the 
input image represent normal. In a defec-
tive sample, only a small portion of fea-
tures represents defect (Figure 4). In the 
training phase, let these features compete 
with each other, and make the network 
aware of the defect location. Unlike other 
methods in the training phase, they not 
only give a sample’s class but also addi-

Figure 1. Examples of defect label: a) bounding box, b) pixel-wise mark.
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Figure 2. Two properties of CNN: a) after parameter revision in one step; only a small 
neighborhood of the output is affected; b) every feature in the higher layer of CNN has its 
own visual field in the input image.
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tional supervision information (bounding 
box or pixel-wise marked) to provide the 
defect location. The SACNN only needs 
an image-level label (defect-free or de-
fective) of samples, not complex label 
information.

Feature extractor
This consists of a string of CBs (convo-
lutional blocks). Every block consists 
of a convolutional layer, dilated con-
volutional layer and maximum pooling 
layer, followed by a ReLU (Rectified 
Linear Unit) activation function. When 
features pass through a CB, the size of 
them will be halved because of pooling. 
For convenience of expression, a feature 
pixel in the feature map of the output of 
a CB is denoted as a pixel. The number 
of CBs is decided by the visual field of 
a pixel. And the visual field of a pixel in 
the last CB’s feature map should be ap-
proximately equal to the size of the actual 
defect. Therefore, the number of CBs is 
decided by the size of defects. This part 
can be trained from scratch in an end-to-
end way. Also, a pretrained network can 
be used as a feature extractor. This part 
can be expressed as Equation (1). 

F(s,t)=C�(C�(C�(... (C�(IM(i,j)))... ))) 
(1)

where, IM(i,j) denotes the input image 
with a height of i pixels and width of j 
pixels, C a CB, � the operation between 
the CB and input, and F(s,t) denotes the 
output of the feature extractor with 
a height of s pixels and width of t pixels.

Feature competition
After extracting features, feature com-
petition takes place. The main process is 
as follows: 1) Classify the output of the 
feature extractor’s every pixel into two 
classes (0 denotes a defect-free pixel 
and 1 a defective pixel) using softmax. 
The reason for using softmax other than 
the sigmoid function is that it is easier 
to expand to classify different defective 
types in the future. After classification, 
every pixel gets a probability of being 
defective and of being defect-free, which 
means their sum is equal to 1. And two 
layers are obtained, one representing the 
probability of being defect-free, and the 
other of being defective. As the sum of 
two layers at every pixel is equal to 1, ei-
ther of them provides sufficient informa-
tion. 2) In the defective layer, let all pixels 
compete with each other, and the pixel 
that has the maximum probability wins 
out. This pixel’s probability is considered 
as the input image-level label. This pro-
cess is called spatial adversarial, because 
the pixel chosen is the maximum pixel in 
the whole defective layer of the input im-
age and can be mapped to a specific area 
in the input image. 3) Train the network 
between the pixel’s value and the im-
age level label using cross-entropy loss. 
This process can be expressed as Equa-
tions (2), (3) and (4), 

lk* = max(softmax(Fk
(s,t)))   (2)

lossk = -(lk × log(lk*) +(1 – lk) × log(1 – lk*)) 
(3)

tloss = Σ lossk  k = 1, 2, 3,..., n  (4)

where tloss denotes the total loss of 
a batch with n samples, lossk – the weight-
ed cross-entropy loss of a sample, lk – the 
true label of sample k, and lk* denotes the 
network’s label produced.

Through feature competition, SACNN 
can focus on the defective region auto-
matically. This phenomenon can be ex-
plained by the properties of CNN dis-
cussed above. Property 2 makes every 
pixel have a visual field approximately 
the same size as the defect’s . This prop-
erty is used in many detection tasks and 
is easy to understand. Property 1 makes 
feature competition lead the network 
to the true defective region. This is the 
core idea of this paper, which can be ex-
plained as follows. In the above, feature 
competition takes place among the defec-
tive layer. In a defect-free sample, since 
every pixel is normal, the max-valued 
pixel should be suppressed during train-
ing. And decreasing this pixel can lead 
the model converging to 0 probability 
for all pixels in the defect-free sample. In 
a defective sample, the situation is much 
complex because the max-valued pixel 
may not belong to the actual defect re-
gion. The max-valued pixel is considered 
as a defective probability of the whole 
sample image, but it may not be the real 
defective pixel. This false-positive pixel 
may lead to a training error. But in other 
samples there exist more regions similar 
to this false positive pixel that are cor-
rectly classified as defect-free. Thus, 
although the model is revised by a false 
positive, it will be corrected by other 

Figure 3. Structure of SACNN.
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more similar regions. This is where prop-
erty 1 takes effect: this wrong training 
step is revised by the normal samples, 
because a similar region maybe exists in 
defect-free samples, and the number of 
defect-free samples is much larger than 
the number of defective samples. Thus, 
there is competition among the pixels in 
the feature map, which will lead to the 
network fluctuating and slowly converg-
ing.

In the testing phase, testing images pass 
through the feature extractor, and every 
pixel in the output of the feature extrac-
tor is classified as defect-free or defec-
tive. Because the sum of the probabil-
ity of being defective or defect-free is 1, 
any layer holds the whole information. 
In consideration of the defect detection 
task, a defective layer is used, which is 
extracted and resized to the correspond-
ing test image’s size using bilinear in-
terpolation. Then we get the probability 
of there being a defect at each pixel of 

the test image. A simple threshold of 
0.5 can be used to distinguish between 
the defect-free and the defective, or some 
more sophisticated methods such as Otsu 
[15] and non-maximum suppression [16] 
can be used to locate the defect position. 
With the help of the visual method in the 
experiment section, the core idea that 
feature competition can lead the network 
to converge towards the defective region 
will be shown, and results will support 
our spatial adversarial idea. Experiments 
in the next section show that our SACNN 
model works for two datasets.

	 Experiments and discussion
In this section, experiments were con-
ducted to show that SACNN can sponta-
neously detect a defective region, which 
supports our spatial adversarial idea. 
First, two datasets are introduced, and 
then details of the implementation are 
given. Finally, the experiment results and 
comparisons are presented. 

Datasets
The model is tested on two datasets. One 
is a fabricated character detection da-
taset, and the other is a textile dataset. 
Figure 4 shows two samples of the da-
tasets. The character detection dataset is 
used to prove the correction of the spatial 
adversarial mechanism. Each sample is 
an image with a size of 136 × 136 pixels. 
It has two classes: having a character or 
without any character. We consider char-
acter a defect, which can locate any posi-
tion of the image. In order to increase the 
variety of samples, we add noise to them, 
like some line segments and a much larg-
er character. The font size of a character 
is 32 × 32, and its font type is randomly 
chosen from those in the operating system 
(about 40 font types). The textile dataset 
is from one of the DAGM 2007 contest 
datasets. Each sample is a 512 × 512 pix-
el image. The dataset has 575 training 
samples and 575 test samples. The data-
set also provides the mask of the defec-
tive region used for training, but we do 
not use it during training. And the sample 
number in each class in the dataset is far 
from balanced; the number of defect-free 
samples is almost five times that of de-
fective samples.

Implementation details
The PyTorch framework is used to im-
plement our model. The code is shared at 
https://github.com/yjphhw/SACNN. In 
training the character detection dataset, 
3 convolutional blocks cascade together 
as a feature extractor. Every epoch has 
100,000 samples, where the batch size is 
64; the optimiser is a stochastic gradient 
descent (SGD), and the learning rate is 
0.01. In training the textile dataset, five 
convolutional blocks cascade together as 
a feature extractor, where Batch size is 

Figure 4. Samples of two datasets: a) character detection dataset, b) textile dataset. Bounding 
boxes in a) & b) show the position of the real defect, but this bounding box information is 
not used in training SACNN.

Figure 5. Competitive phase when training SACNN for the character detection dataset (textile dataset also shows similar behaviour). At 
the beginning of the training, both the loss value a) and classification precision b) fluctuate because of competition among features.
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the map to obtain the defect location result. 

The defect location detection result is compared with Gradient-weighted Class Activation Mapping (Grad-CAM) [17]. It is 

Figure 10. Enlarged detection result for textile dataset. The detection results are overlaid on the test samples. The 
bounding box is the ground truth. The red area is the located result.

(a)  batch of samples                          (b) epoch 100                              (c) epoch 1200

(d) epoch 1600                                  (e) epoch 1700                                   (f) epoch 1760 
Figure 9. SACNN convergence to the location of the textile defect: (a) a batch of test samples in the textile dataset, (b) 
after epoch 100, locations on the feature map are in fierce competition, (c) after epoch 1200, some locations gain an 
advantage from competition, (d-f) location of defect wins out.

(a)                                                     (b)
Figure 8. Overlay of detection results on test samples: (a) test samples with
only  one character, (b) test samples with multiple characters.

7 

Defect location result: Another result is from the output of the softmax layer, which classifies every pixel in the feature 
map into two classes. Every pixel in the feature map represents a region in the input image. Since the input image only 
changes in scale, the relative position is the not changes in the feature map. The defective layer is selected and resized to the 
size of the input image using bilinear interpolation, and this defective probability map could show the possible location of the 
defect. In Fig. 6, training accuracy is improved over time, and it is also true for the accuracy of defect location. SACNN can 
slowly converge to the location of the defect. This process is be visually explained by Fig. 7 and Fig. 9. Fig. 7 shows character 
detection accuracy changes at different training epochs. When the training starts, the network hardly selects the true position 
of the defect, and will fluctuate. Over time, the network can slowly focus on the real defect location through competition, 
which is also true for textile defect detection; similar results are shown in Fig. 9 and Fig. 10. The defect location can be 
detected after 1760 epochs of training, and the detection results are almost located inside the boundary of the real defect 
location. 

In Fig. 8, detection results overlay  test samples,  showing that the model finds the right location no matter whether there is 
one or several characters in a sample. Besides, it comprises the same cost of detection, because the defective layer is 
produced without extra processing. After acquiring the defective probability map, threshold 0.5 can be selected to binarise

(a)  batch of samples                        (b) epoch 1                                    (c) epoch 4

(d) epoch 7                                           (e)  epoch 11                                   (f) epoch 17

Figure 7. SACNN convergence to the location of character: (a) a batch of test samples in the character detection dataset, (b) 
after epoch 1, locations on the feature map are in fierce competition, (c) after epoch 4, some locations gain an advantage from 
competition, (d-f) location of character wins out through competition.

Figure 6.  Precision under different sample ratios during training SACNN for 
the character detection dataset. 
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16; the optimiser is SGD, and the learn-
ing rate is 0.01. In the initial phase of 
training, the network fluctuates and is 
hard to converge. The reason is that the 
network may choose the wrong defective 
region in the beginning and needs time 
to allow the true defective region to win 
out. This situation is well explained and 
predicted by our model in prior sections 
and is shown in Figure 5. In Figure 5.a, 
the training loss does not decrease in the 
first three epochs, because feature com-
petition takes place. In a defective sam-
ple, the max-valued pixel may not be the 
truly defective one, hence the loss of the 
model will fluctuate. After the first three 
epochs, the model learns some truly de-
fective pixels, and the loss of the model 
starts to decrease. This phenomenon is 
supported by Figure 7. The classifica-
tion precision also takes a similar action 
to the loss in Figure 5.b. For the textile 
dataset, the model undergoes a similar 
competitive phase during training.

Experiment results
Classification result: two results can be 
produced from our SACNN model in 
Figure 2. One is directly from the net-
work output, being the class of the input 
image, whether the image is defective 
or defect-free. The character detection 
dataset is used to validate the effectivi-
ty of the model. Table 1 shows that the 
accuracy of the model for the dataset is 
98.4%, which means the spatial adver-
sarial mechanism proposed is effective. 
Then, the model is trained for the textile 
dataset, and the accuracy of defect classi-
fication reaches 98.6%. Since the model 
is trained by the image level class, it is 
essentially a weakly supervised meth-
od. There are no similar methods which 
research datasets. Therefore, two other 
methods are compared: one is a super-
vised method from [21], and the other 
is an unsupervised method from [22]. In 
[21] Kim et al. clipped the images into 
patches and labelled the class of each 
patch. A fully supervised CNN is used 
for classification as defect or defect-free. 
The accuracy of the defect classification 
is 99.8%, while that of ours is only 1.2% 
lower. The accuracy of the model is com-
parable to the supervised method, and 
is higher than the unsupervised method 
[22] by 7.1%.

In addition, the number of defective and 
defect-free samples is unbalanced. When 
training the model, the ratio of defective 
and defect-free samples is roughly 1:5 

Table 1. Classification accuracy. 

Dataset

SACNN training from 
scratch

Fine-tuning results 
 in [21]

Weibull 
features [22]

 Training 
epochs

Test 
accuracy

Training 
epochs

Test 
accuracy

Test 
accuracy

Character detection dataset 20 98.4% – – –
Textile dataset 1760 98.6% 3 99.8% 91.5%

Figure 6. Precision 
under different sam-
ple ratios during tra-
ining SACNN for the 
character detection 
dataset.

Figure 7. SACNN convergence to the location of character: a) a batch of test samples in 
the character detection dataset, b) after epoch 1, locations on the feature map are in fierce 
competition, c) after epoch 4, some locations gain an advantage from competition, d-f) 
location of character wins out through competition.
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Figure 9. SACNN convergence to the location of the textile defect: a) a batch of test samples in the 
textile dataset, b) after epoch 100, locations on the feature map are in fierce competition, c) after 
epoch 1200, some locations gain an advantage from competition, d-f) location of defect wins out.

Besides, it comprises the same cost of 
detection, because the defective layer is 
produced without extra processing. After 
acquiring the defective probability map, 
threshold 0.5 can be selected to binarise 
the map to obtain the defect location re-
sult.

The defect location detection result is 
compared with Gradient-weighted Class 
Activation Mapping (Grad-CAM) [17]. 
It is a technique for visual explanations 
of decisions from CNN. It can locate 
which part of the sample contributes to 
the classification result. Like SACNN, 
Grad-CAM also uses an image-level la-
bel to train the CNN model, and uses the 
intermediate result to show the important 
parts which contribute to the classifica-
tion result. We compare SACNN with 
Grad-CAM for textile datasets. VGG19 
was used for fine-tuning in Grad-CAM. 
Figure 11 gives the results of comparison 
for the textile dataset. Figure 11.a shows 
three defective samples from the textile 
dataset, and ground true bounding boxes 
are marked. Figure 11.b gives visual re-
sults from Grad-CAM, showing which 
part contributes to classification. Fig-
ure 11.c displays detection results from 
SACNN. From the comparison results, 
we can conclude that both SACNN and 
Grad-CAM can detect the correct defec-
tive location; but SACNN gets a more 
compact result.

	 Conclusions
In textile defect detection, we are faced 
with unbalanced and insufficiently de-
tailed labelled data. This paper proposes 
a model called SACNN, designed based 
on the intuition of two features of CNN. 
It uses a string of convolutional blocks 
to first extract features and then classi-
fies the image. Moreover, it can detect 
the location of defects through the spa-
tial adversarial mechanism. Experiments 
on two datasets show that SACNN can 
achieve an accuracy of defect classi-
fication close to that of the supervised 
method, and is robust towards imbal-
anced datasets. Compared to Grad-CAM, 
SACNN can spontaneously focus on 
defect location through feature competi-
tion, and can obtain more compact and 
accurate results. In the future, we will use 
the model proposed in actual industrial 
environments and strengthen it to adapt 
to defects at different scales and of vari-
ous types.

  
Figure 10. Enlarged detection result for textile dataset. The detection results are overlaid 
on the test samples. The bounding box is the ground truth. The red area is the located result.

in training samples. Experiments under 
different ratios were carried out for the 
character detection dataset. As can be 
seen from Figure 6, SACNN is robust 
towards the unbalanced sample set. After 
15 epochs of training, the accuracy is al-
most the same when the ratio of defective 
samples to defect-free samples is great-
er than 1:10. This implies the model can 
tolerate some level of sample imbalance. 
The classification result is from the out-
put of the model’s end-to-end training. 
Based on the classification result, the de-
fect location result can be drawn from it.

Defect location result: Another result 
is from the output of the softmax layer, 
which classifies every pixel in the fea-
ture map into two classes. Every pixel 
in the feature map represents a region in 
the input image. Since the input image 
only changes in scale, the relative posi-
tion is the not changes in the feature map. 
The defective layer is selected and re-
sized to the size of the input image using 
bilinear interpolation, and this defective 

probability map could show the possible 
location of the defect. In Figure 6, train-
ing accuracy is improved over time, and 
it is also true for the accuracy of defect 
location. SACNN can slowly converge 
to the location of the defect. This process 
is be visually explained by Figures 7 
and 9. Figure 7 shows character detec-
tion accuracy changes at different train-
ing epochs. When the training starts, the 
network hardly selects the true position 
of the defect, and will fluctuate. Over 
time, the network can slowly focus on the 
real defect location through competition, 
which is also true for textile defect de-
tection; similar results are shown in Fig-
ures 9 and 10. The defect location can be 
detected after 1760 epochs of training, 
and the detection results are almost locat-
ed inside the boundary of the real defect 
location.

In Figure 8, detection results overlay test 
samples, showing that the model finds 
the right location no matter whether there 
is one or several characters in a sample. 

a) b) c)

d) e) f)



133FIBRES & TEXTILES in Eastern Europe  2020, Vol. 28,  6(144)

  

  

  

Figure 11. Comparison of SACNN and Grad-CAM for the textile dataset: a) test images 
with ground truth bounding box, b) visual results from GAD-CAM method, c) detection 
results from SACNN.
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