Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: The presented study evaluates the spatial resolution of the Modular J-PET scanner using the National Electrical Manufacturers Association (NEMA) NU2-2018 standard. The Modular J-PET, constructed with BC-404 plastic scintillators in an axial arrangement and coupled with analogue Silicon Photomultipliers (SiPMs) at both ends, offers a 50 cm axial field of view and a bore diameter of 73.9 cm. The study compares results from GATE simulations with experimental data. Objective: The primary objective of this study is to assess the spatial resolution of the Modular J-PET scanner, using Time-of-Flight (TOF) and non-TOF image reconstruction, based on NEMA NU2-2018 guidelines. Methods: Spatial resolution was evaluated using a Na-22 point-like source as recommended by NEMA NU2-2018. Both TOF and non-TOF list mode acquisitions were performed, with a comparative analysis of the results from experimental and simulated data. Results: Radial spatial resolution, obtained based on the experimental data when taking into account TOF, is equal to 4.92 ± 0.56 mm, 7.38 ± 0.49 mm, and 6.94 ± 0.38 mm at positions 1 cm, 10 cm, and 20 cm from the detector centre, respectively. The tangential spatial resolution for TOF image reconstruction was determined as 7.38 ± 0.51 mm, 7.37 ± 0.10 mm, and 14.67 ± 0.31 mm at the same positions based on experimental data, while axial spatial resolution was calculated as 30.73 ± 0.52 mm, 30.73 ± 0.64 mm, and 31.96 ± 0.29 mm based on experimental data. Simulated radial spatial resolution for TOF image reconstruction methods was found to be 4.80 ± 0.59 mm, 7.26 ± 0.55 mm, and 6.67 ± 0.42 mm at positions 1 cm, 10 cm, and 20 cm from the detector centre, respectively. The simulated tangential spatial resolution for TOF image reconstruction methods was determined as 7.27 ± 0.47 mm, 7.27 ± 0.59 mm, and 15.1 ± 0.4 mm at the corresponding positions, while the simulated axial spatial resolution was determined as 29.97 ± 0.49 mm, 30.53 ± 0.74 mm, and 31.78 ± 0.11 mm. Conclusions: The Modular J-PET meets NEMA NU2-2018 standards, with TOF mode providing better spatial resolution than non-TOF, validating the system’s high-resolution imaging capabilities.
Czasopismo
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- doktorant, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
- Center for Theranostics, Jagiellonian University, Krakow, Poland
autor
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
- Center for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
- 1. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7(1):35.
- 2. Alavi A, Werner T, Stepien E, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio-Algorithms and Med-Systems. 2021;17:203-12.
- 3. Alavi A, Saboury B, Nardo L, Zhang V, Wang M, Li H, et al. Potential and most relevant applications of total body PET/CT imaging. Clin Nucl Med. 2022;47:43-55.
- 4. Surti S, Pantel AR, Karp JS. Total Body PET: Why, How, What for?. IEEE Trans Radiat Plasma Med Sci. 2020;4(3):283-92.
- 5. Zhang X, Zhou J, Cherry SR, Badawi RD, Qi J. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol. 2017;62(6):2465-85.
- 6. Nadig V, Herrmann K, Mottaghy FM, Schulz V. Hybrid total-body pet scanners-current status and future perspectives. Eur J Nucl Med Mol Imaging. 2022;49:445-59.
- 7. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximising sensitivity to create new opportunities for clinical research and patient care. J. Nucl. Med. 2018;59(1):3-12.
- 8. Surti S, Karp J. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol. 2015;60(13):5343-58.
- 9. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chung N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys. Med. Biol 2021;66:175015.
- 10. Rezaei H, Sheikhzadeh P, Ghafarian P, Zaidi H, Ay MR. Accurate modeling and performance evaluation of a total-body pet scanner using Monte Carlo simulations. Med Phys. 2023;50(11):6815-27.
- 11. Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance evaluation of the uExplorer total-body PET/CT scanner based on NEMA-nu 2-2018 with additional tests to characterize pet scanners with a long axial field of view. J. Nucl. Med. 2021;61:861.
- 12. Moskal P, Stepien E. Prospects and clinical perspectives of total-body PET imaging using plastic scintillator. PET Clinics. 2020;15:439-52.
- 13. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multi-photon PET scanner. Sci Adv. 2021;7:eabh4394.
- 14. Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, et al. First positronium image of the human brain in vivo. Sci Adv. 2024;10(37):adp2840.
- 15. Moskal P, Kumar D, Sharma S, Beyene EY, Chug N, Coussat A, et al. Non-maximal entanglement of photons from positron-electron annihilation demonstrated using a novel plastic PET scanner. HEP 2024;arXiv:2407.08574.
- 16. Moskal P, Czerwiński E, Raj J, Bass SD, Beyene EY, Chug N, et al. Discrete symmetries tested at 10-4 precision using linear polarization of photons from positronium annihilations. Nat Commun. 2024;15(1):78.
- 17. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun. 2021;12(1):5658.
- 18. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instrum. Methods Phys. Res 2014;764:317-28.
- 19. Sharma S, Povolo L, Mariazzi S, Korcyl G, Kacprzak K, Kumar D, et al. Feasibility studies for imaging e+e- annihilation with modular multi-strip detectors. Nucl. Instrument. Meth. 2024;1062:169192.
- 20. Kowalski P, Wiślicki W, Raczyński L, Alfs D, Bednarski T, Białas P, et al. Scatter fraction of the J-PET tomography scanner. Acta Phys. Polon. B 2016;47:549.
- 21. Ardebili FT, Niedźwiecki S, Moskal P. Evaluation of Modular J-PET sensitivity. Bio-Algorithms and Med-Systems 2023;19:132-8.
- 22. Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: a new technology for the whole-body PET imaging. Acta Physica Polonica B. 2017;48:1567-70.
- 23. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys. Med. Biol 2019;64:055017.
- 24. Moskal P, Jasińska B, Stępień E, Bass SD. Positronium in Medicine and Biology. Nat. Rev. Phys. 2019;1(9):527-9.
- 25. nist.gov [Internet]. National Institute of Standards and Technology; 2020 [cited 2021 March 24]. Available from: https://nist.gov/pml.
- 26. NEMA Standards Publication NU 2-2018: Performance Measurements of Positron Emission Tomographs. National Electrical Manufacturers Association. Rosslyn VA, USA, 2018.
- 27. Dadgar M, Parzych S, Ardebili FT. A Simulation Study to Estimate Optimum LOR Angular Acceptance for the Image Reconstruction with the Total-Body J-PET. MIUA 2021;12:189-200.
- 28. Dadgar M, Kowalski P. GATE Simulation Study of the 24-Module JPET Scanner: Data Analysis and Image Reconstruction. Acta Phys. Pol. B. 2020;51:309-11.
- 29. Kapłon L, Moskal G. Blue-emitting polystyrene scintillators for plastic scintillation dosimetry. Bio-Algorithms and Med-Systems 2021;17(3):191-7.
- 30. 3M.com [Internet]. Science. Applied to Life; [cited 2021 March 24]. Available from: https://www.3m.com.
- 31. dupont.com [Internet]; [cited 2021 March 24]. Available from: https://www.dupont.com.
- 32. Kaplon L. Technical Attenuation Length Measurement of Plastic Scintillator Strips for the Total-Body J-PET Scanner. IEEE Trans. Nucl. Sci. 2020;67(10):2286-9.
- 33. Korcyl G, Białas P, Curceanu C, Czerwiński E, Dulski K, Flak B, et al. Evaluation of single-chip, real-time tomographic data processing on fpga soc devices. IEEE Transactions on Medical Imaging 2018;37:2526-35.
- 34. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 2004;49(19):4543-61.
- 35. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 2011;56(4):881.
- 36. Sarrut D, Bała M, Bardies M, Bert J, Chauvin M, Chatzipapas K, et al. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys. Med. Biol 2021;66(10):10TR03.
- 37. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4 - a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A. 2003;506(3):250-303.
- 38. Kowalski P, Raczyński L, Bednarski T, Białas P, Czerwiński E, Giergiel K, et al. Determination of the map of efficiency of the Jagiellonian Positron Emission Tomograph (J-PET) detector with the GATE package. Bio-Algorithms and Med-Systems 2014;10(2):85-90.
- 39. Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, et al. Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A. 2016;835:186-225.
- 40. eljentechnology.com [Internet]. Physical Constants Of Plastic Scintillators; [cited 2021 March 24]. Available from: https://eljentechnology.com/images/technical/_library/Physical-Constants-Plastic.pdf.
- 41. Dadgar M. Feasibility study of lesion detection by means of total-body jagiellonian positron emission tomography scanner [dissertation]. Krakow: Jagiellonian University; 2022.
- 42. Tayefi Ardebili TF. Evaluation of the NEMA characteristics for the Modular J-PET scanner [dissertation]. Krakow: Jagiellonian University; 2024.
- 43. Gonzalez-Montoro A, Sánchez F, Bruyndonckx P, Cañizares G, Benlloch JM, González AJ. Novel method to measure the intrinsic spatial resolution in PET detectors based on monolithic crystals. Nucl. Instrum. Methods Phys. Res. A. 2019;920:58-67.
- 44. Ermert J, Neumaier B. The Radiopharmaceutical Chemistry of Fluorine-18: Nucleophilic Fluorinations. In: Lewis J, Windhorst A, Zeglis B, editors. Radiopharmaceutical Chemistry. Cham: Springer; 2019. p. 273-83.
- 45. Schmall JP, Karp JS, Werner M, Surti S. Parallax error in long-axial field-of-view PET scanners - a simulation study. Phys Med Biol. 2016;61(14):5443-55.
- 46. Suljic A, Tomse P, Jensterle L, Skrk D. The impact of reconstruction algorithms and time of flight information on PET/CT image quality. Radiol Oncol. 2015;49(3):227-33.
- 47. Dadgar M, Parzych S, Baran J, Chug N, Curceanu C, Czerwiński E, et al. Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators. EJNMMI Physics 2023;10(62):2304.05834.
- 48. Smyrski J, Alfs D, Bednarski T, Białas P, Czerwiński E, Dulski K, et al. Measurement of gamma quantum interaction point in plastic scintillator with WLS strips. Nucl. Instrument. Meth. A. 2017;851:39-42.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f96ecb4b-2480-4b78-affd-ce5786c17e84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.