PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Problems with modeling of fractional electrical circuits containing supercapacitors

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For proper operation, diagnostics or control, it is required to know the parameters of the supercapacitor replacement model (relationship between current and voltage at the terminals). The paper describe the bahavior of the eletrical circuit (RC) containing the supercapacitor were used the fractional derivatives of Caputo definiton and Conformable Fractional Derivative definition. Verification of the correctness of the suggested electrical circuit models was carried out a series of measurements of the system response to the given control signal. The measurement data were compared by fractionalorder derivatives: classical case, Caputo definition and CFD definition. Conducting a series of experiments with charging a supercapacitor in an RC circuit, constant control voltage from 2 V to 5 V with an exchanged external resistor, it was shown that none of the three mathematical models reflects the real behavior of the supercapacitor. It has been shown that the behavior of supercapacitor requires the use of different mathematical than fractional derivatives.
Rocznik
Tom
Strony
65--74
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Bialystok University of Technology
Bibliografia
  • [1] Abdeljawad T., On conformable fractional calculus. J. Comp. and Appl. Math., Vol. 279, pp. 57–66, 2015.
  • [2] Alsaedi A., Nieto J.J., Venktesh V., Fractional electrical circuits. Advances in Mechanical Engineering, Vol 7, no. 12, pp. 1–7, 2015.
  • [3] Beguin F., Frackowiak E., Supercapacitors: Materials, Systems and Applications, Wileyvch, 2013.
  • [4] Caponetto R., Dongola G., Fortuna L., Petráś I., Fractional Order Systems. Modeling and Control Applications, World Scientific, 2010.
  • [5] Caputo M., Linear model of dissipation whose q is almost frequency independent. II, Geophys. J. R. Astr. Soc., 13:529–539, 1967.
  • [6] Dzieliński A., D. Sierociuk D., and Sarwas G., Some applications of fractional order calculus. Bulletin of The Polish Academy of Sciences - Technical Sciences, 58(4):583–592, 2010.
  • [7] Głuchy D., Kasprzyk L., Tomczewski A., Supercapacitors modeling for the coopeation with RES, Poznan University of Technology Academic Journals, Electrical Engieering, Poznan, 2017 (in Polish).
  • [8] Jesus I.S., Tenreiro Machado J.A., Comparing Integer and Fractional Models in some Electrical Systems, Procc. 4th IFAC Workshop Fractional Differentiation and its Applications, Badajoz, Spain, October 18–20, 2010.
  • [9] Kaczorek T., Analysis of fractional electrical circuits in transient states, Logistyka, Vol. 2, 2010.
  • [10] Kaczorek T., Rogowski K., Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control, vol. 13, Springer, 2015.
  • [11] Kaczorek T., Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin, 2011.
  • [12] Kasprzyk L., Selected issues of modeling of electrochemical cells and supercapacitors in electric vehicles, Poznan University of Technology Academic Journals. Electrical Engineering, No. 101, p. 3–55, 2019.
  • [13] Khalil R., Al Horani A., Yousef A., Sababheh M., A new definition of fractional derivative. J. Comput. Appl. Math., Vol. 264, pp. 65–70, 2014.
  • [14] Lai J.S., Levy S., and Rose M.F., High energy density double-layer capacitors for energy storageapplications. IEEE Aerospace and Electronic Systems Magazine, 7, April 1992.
  • [15] Liouville J., Mémoire sur quelques quéstions de géometrie et de mécanique, et sur un noveau genre pour résoudre ces questions, J. École Polytech., 13:1–69, 1832.
  • [16] Morita T., Sato Ken-ichi, Liouville and Riemann-Liouville fractional derivatives via contour Integrals, Fractional Calculus and Applied Analysis, Volume 16, Numer 3, 2013.
  • [17] Nowak M., Hildebrandt J., Barlik L., Supercapacitors and their applications, Electric Overview (in Polish), R. 78, nr 8, p. 225–230, 2002.
  • [18] Oldham K.B. and Spanier J., The Fractional Calculus. Accademic Press, New York, 1974.
  • [19] Piotrowska E., Rogowski K., Analysis of Fractional Electrical Circuit Using Caputo and Conformable Derivative Definitions. Springer 2018.
  • [20] Piotrowska E., Rogowski K., Chapter 16 Analysis of Fractional Electrical Circuit Using Caputo and Conformable Derivative Definitions, Springer Nature, 2019.
  • [21] Piotrowska E., Analysis of fractional electrical circuit with rectangular input signal using Caputo and conformable derivative definitions, Archives of Electrical Engineering, Vol. 67, 789–802, 2018.
  • [22] Piotrowska E., Analysis of fractional electrical circuit with sinusoidal input signal using Caputo and conformable derivative definitions, Poznan University of Technology Academic Journals Electical Engineering, No. 97, 155–167, 2019.
  • [23] Piotrowska E., Analysis of linear continuous-time systems by the use of the conformable fractional calculus and Caputo, Archives of Electrical Engineering, Vol. 67, nr 3, 629–639, 2018.
  • [24] Piotrowska E., Analysis of fractional electrical in terms and positive systems, Poznan University of Technology Academic Journals Electical Engineering, No. 89, 25–34, 2017 (in Polish).
  • [25] Piotrowska E., Positive continuous-time linear electrical circuit, Poznan University of Technology Academic Journals Electical Engineering, No. 93, 299–309, 2018.
  • [26] Polubny I., Fractional Differential Equations. Academic Press, San Diego 1999.
  • [27] Sarwas G., Modelling and Control of Systems with Ultracapacitors Using Fractional Order Calculus. Warsaw University of Technology, Warsaw 2012.
  • [28] Świderski M., Matecki D., Autonomous power source using photovoltaic panels and supercapacitors, Electronics: constructions, technologies, applications, Vol. 58, nr 11, p. 23–28, 2017.
  • [29] Yu A., Chabot V., Zhang J., Electrochemical Supercapacitors for Energy Storage and Delivery Fundamantals and Aplications, CRC Press, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f96b9ca7-fb5f-43c8-9f40-854c7f0865bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.