
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS 
No 104 Electrical Engineering 2020 
 

DOI 10.21008/j.1897-0737.2020.104.0006 
 

___________________________________________________ 
* Bialystok University of Technology 

 
Ewa PIOTROWSKA* 

 
PROBLEMS WITH MODELING OF FRACTIONAL 

ELECTRICAL CIRCUITS CONTAINING 
SUPERCAPACITORS 

 
 

For proper operation, diagnostics or control, it is required to know the parameters of 
the supercapacitor replacement model (relationship between current and voltage at the ter-
minals). The paper describe the bahavior of the eletrical circuit (RC) containing the super-
capacitor were used the fractional derivatives of Caputo definiton and Conformable Frac-
tional Derivative definition. Verification of the correctness of the suggested electrical cir-
cuit models was carried out a series of measurements of the system response to the given 
control signal. The measurement data were compared by fractionalorder derivatives: clas-
sical case, Caputo definition and CFD definition. Conducting a series of experiments with 
charging a supercapacitor in an RC circuit, constant control voltage from 2 V to 5 V with 
an exchanged external resistor, it was shown that none of the three mathematical models 
reflects the real behavior of the supercapacitor. It has been shown that the behavior of 
supercapacitor requires the use of different mathematical than fractional derivatives. 
 
KEYWORDS: fractional order system, the electrical circuits containing supercapacitors, 
Caputo definition, Conformable Fractional Derivative definition. 
 

1. INTRODUCTION 
 
 Supercapacitors are devices with a huge electrical capacity exceeding 1000 Far-
ads. Supercapacitors have advantages in applications where a large amount of power 
is needed for a relatively short time for example in: PDA's, GPS, portable media 
players, hand-held devices [3, 29] and photovoltaic systems, supercapacitors can 
stabilize the power supply [28]. The most important applications of supercapacitors 
are found in transport in the KERS system, the process of recuperative braking – to 
receive the storage energy made when braking, which significantly increases the 
energy efficiency of the vehicle and reduces air pollution [17].  

Currently, to simplify the structure of the replacement model of supercapacitor, 
while providing a very good fit characteristics of the measured and calculated for 
the calculations used fractional calculus. The Riemann-Liouville definition is  
a classic form of the fractional derivative [15, 16]. It is based on the Cauche mul-
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tiple integration rule. Another definition of an fractional derivatives is Caputo def-
inition. It was introduced by Michele Caputo in an article from 1960 [4,5]. A fur-
ther simplification of the fractional derivative is prepared by Khalil, R., Al Horani, 
M. Yousef. A. and Sababheh, M. in 2014 [1, 13] is Conformable Fractional De-
rivative definition (CFD). The autors was used the Caputo and CFD definitions in 
the previous papers to describe the operation of the electrical circuit containing 
the supercapacitor [19-25].  

The paper organized as follows. The Caputo and CFD definitions were pre-
sented in section 2. Next section 3 described a model of an RC fractional electrical 
circuit. General description of the realize research and analysis numerical of the 
three mathematical models are considered in section 4. Concluding remarks are 
given in section 5. 
 

2. DEFINITIONS FRACTIONAL DERIVATIVES 
 
Definition 1. The function defined by [11]: 
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Definition 2. If 1n nα< ≤ + , 0,1,2,n =  , then the  conformable fractional de-
rivative (CFD) of n- differentiable at t function u (where t > 0) is defined as [13]: 
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Using the definition (5) we get a simple rule: 
 ( ) ( ) ( )11 ,nCFD n

tD u t t u tα α ++ −=  (3) 
where u is 1n +  differentiable function for 0t > . 
 

3. RC – FRACTIONAL ELECTRICAL CIRCUIT 
 

In this paper we will consider the fractional electrical circuit shown in Figure 
1 with given external resistor R , supercapacitor C with series, internal resistance 

CR  and source voltage e . Denote by i  the mesh current.  
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Fig. 1. R, C, e type electrical circuit (Source: own) 

 
The current ( )i t  in the fractional capacitor is related with its voltage ( )u t  by 

formula [11] 
 ( ) ( )ti t C D u tα

α=  for 0 1,α< <  (4) 

where Cα  is the pseudo-capacitance in units of 1-F/s α of  the fractional capacitor. 

tDα  can be a differential operator of an incomplete order according to both defi-
nitions Caputo and Conformable Fractional Derivative definition. 
When 1α =  we have  

 ( ) ( ) ,
du t

i t C
dt

=  (5) 

where C  is the capacitance of the capacitor expressed in F (farad). 
Using the equation (4) and Kirchhoff’s laws we may describe the transient states 
in the electrical circuit by the fractional differential equation 
 ( ) ( ) ( ) ,      0 1,tD u t u t e tα λ λ α= − < <  (6a) 
where  ( )e t  is the input function and 

 ( )
1 ,

CR R Cα
λ = −

+
 (6b) 

is the real, negative constant. Starting point is ( ) 00u u= .  
Input control voltage is expressed by step function of magnitude U  

 ( ) 0    for 0,
  for 0,

t
e t

U t
<

=  ≥
 (7) 

Equation (6a) reduces to 
 ( ) ( ) ,      0 1.tD u t u t Uα λ α=  −  < <   (8) 

Since both the Caputo derivative and the CFD derivative from the constant 
function are equal to zero, we can make substitution in the formula (8) 

( ) ( )u t u t U= + . Then we get the equation (7) without control 



68  Ewa Piotrowska 
 

 

 ( ) ( ) ,      0 1,tD u t u t Uα λ α=  −  < <   (9) 
with the initial condition 0 0u u U= − .  
Solution 1 In the case of Caputo definition, we get a solution [11] equations (9) 
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is the one parameter Mittag-Leffler function. 
 
Solution 2 For CFD definition, we get a solution [13] equation (9) 
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Returning to the original coordinate in equations (10) and (12), assuming zero 
initial condition ( discharged supercapacitor), and having (6b), we have: 
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Solution 3 Substituting 1α = into (13) or (14), we obtain classical case 

 ( ) ( )1 ,C

t
R R C

Classu t U e
−

+
 
 = −
  

 (15) 

where C  is capacitance of supercapacitor. 
 

4. NUMERICAL ANALYSIS 
 

The measurements were carried out each time with a discharged supercapaci-
tor. The exchanged external resistors were resistances 

{ }10 0 Ω 20 7 Ω 51 7 Ω 98 7 ΩR . , . , . , .∈ . The parameter of supercapacitor produced 
by Panasonic EECS0HD334H of nominal capacity 0.33 F and measured internal 
resistance 28.26CR = Ω . The magnitudes of step, input voltage are 

{ }2 ,  3 ,  4 ,  5U V V V V∈ .The measurements rated were taken with a sampling 
time of 50 ms. The parameter values C , Cα and α , obtained as a result of the 
optimization procedure, using the Least Squares Fitting method, formulas (13)-
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(15), experimental data. Parameter obtained from fitting method for a determined 
value of the control voltage, a selected external resistor and a fixed supercapacitor 
model are presented in the table 1.  

Conducting a series of experiments with charging a supercapacitor in an RC 
circuit, constant control voltage from 2 V to 5 V with an exchanged external re-
sistor, it was shown that none of the three mathematical models reflects the actual 
behavior of the supercapacitor. This is demonstrated by the workability of the  
C, Cα , α  parameters values, the given in table 1. 

 
Table 1. Parameter obtained from fitting method for a determined value of control voltage 
and a selected external resistor with a selected fractional derivative definitione. 
 

U [V] R [Ω] 
Classical case CFD Caputo 

α C [F] α Cα[F/s1-α] α Cα[F/s1-α] 

2 

10.0 1 0.103 0.355 0.1000 0.595 0.0363 

20.7 1 0.121 0.372 0.0885 0.600 0.0363 

51.7 1 0.177 0.438 0.0765 0.638 0.0435 

98.7 1 0.215 0.545 0.0756 0.753 0.0689 

3 

10.0 1 0.111 0.358 0.1026 0.608 0.0392 

20.7 1 0.128 0.378 0.0900 0.615 0.0389 

51.7 1 0.182 0.443 0.0776 0.653 0.0462 

98.7 1 0.222 0.543 0.0766 0.752 0.0703 

4 

10.0 1 0.118 0.366 0.1044 0.624 0.0426 

20.7 1 0.136 0.387 0.0920 0.630 0.0424 

51.7 1 0.185 0.451 0.0785 0.675 0.0503 

98.7 1 0.228 0.541 0.0775 0.756 0.0730 

5 

10.0 1 0.124 0.371 0.1057 0.635 0.0450 

20.7 1 0.141 0.390 0.0930 0.640 0.0445 

51.7 1 0.187 0.446 0.0785 0.670 0.0497 

98.7 1 0.232 0.538 0.0780 0.760 0.0750 
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In sixteen measurement series, a discrepancy of the derivative values was ob-
served - from 0.595 to 0.760 for the Caputo definition and 0.355-0.545 for the 
CFD definition. Obtained α and Cα depend on what voltages the system was sup-
plied with and what was the value of external resistivity. 

In figure 2 presents the measurements voltage across the supercapacitor and 
the best fit curves based on classical case solution (15). In figure 3 and figure 4 
CFD solution (14) and in figure 5 and figure 6 Caputo solution (13) for resistances 

1 10.0R = Ω , 2 20.7R = Ω , 3 51.7R = Ω , 4 98.7R = Ω .  
 

 
Fig. 2. Capacities obtained in classic case definition for the supercapacitor 0.33 F  

 

 
Fig. 3. Order of the derivative obtained for CFD definition for the supercapacitor 0.33 F 
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Fig. 4. Pseudo capacity obtained for the CFD definition for the supercapacitor 0.33 F 

 

 
Fig. 5. Order of the derivative obtained for the Caputo definition for the supercapacitor 0.33 F 

 

 
Fig. 6. Pseudo capacity obtained for the Caputo definition for the supercapacitor 0.33 F 
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The diagrams presents the charging of the supercapacitor in the RC circuit 
with constant control voltage from 2 V to 5 V at the replaced external resistor, 
obtaining values of α and Cα depending on the resistances 10 Ω, 21 Ω, 52 Ω, 
99 Ω. As a result, the alpha derivative order (0.6 to 0.76) is not convergent re-
gardless of the calculation method. The pseudo capacity values fluctuated signif-
icantly from 0.036 to 0.076. This means that using constant control voltage and 
resistance parameter of supercapacitor model is incorrect. 

Another method was also used to determine the parameters describing the su-
percapacitor. It consists in the application of the optimization procedure, for 
measurement data at a fixed control voltage, four measurement series were per-
formed with subsequent external resistances removed. Results are presented in 
the table 2.  
 
Table 2. The parameters obtained from fitting method for a fixed control voltage and four 
measurement series. 
 

 Classical case CFD Caputo 
e [V] α C α Cα α Cα 

2 1 0.1655 0.5249 0.08206 0.6602 0.04563 
3 1 0.1722 0.5260 0.08398 0.6673 0.04789 
4 1 0.1779 0.5301 0.08593 0.6811 0.05130 
5 1 0.1815 0.5314 0.08703 0.6854 0.05279 

 
In the second method optimization procedure based on data from four meas-

urement series, describe to different external resistors, the differences of approx-
imated parameters α, Cα and C are much smaller than in Table 1. 
 

5. CONCLUSION 
 

The study compares three mathematical models of supercapacitors. The first of 
them assumed that the supercapacitor consists of series connected internal re-
sistances RC  and a classic capacitor with capacity C. The next two supercapacitor 
models assume the existence of a series of internal resistances RC and a pseudo-
capacitive C element, described α by one of  the fractional definition. None of these 
three models reflects the actual behavior of the supercapacitor. This is evidenced by 
the derivative values of C, Cα, α. In sixteen measurement series, the derivative order 
has a large variance. Also, the pseudo capacity values are not valid.  Such results 
indicate that the supercapacitor model assumes invariance of parameters 𝛼, 𝐶ఈ is 
incompatible with the results of the experiments. This effect may be caused by the 
fact that the supercapacitor is not a linear element.  
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In many papers, supercapacitors are part of the incomplete order used to build 
electrical circuits. Research included in this work negatively verified the assump-
tion that supercapacitors are elements of the incomplete order, at the same time 
pointing to the occurrence of non-linear phenomena during charging of the su-
percapacitor. Many authors in their papers assume the correctness of the superca-
pacitor model based on the Caputo definition, not knowing about the problems 
with describe the behavior of the supercapacitor. 
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