PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Biomass Ash on the Migration of Heavy Metals in the Flooded Soil Profile : Model Experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ popiołu z biomasy na migrację metali ciężkich w profilu gleb zalanych wodami powodziowymi : doświadczenie modelowe
Języki publikacji
EN
Abstrakty
EN
Soils that have been exposed to flood waters can be heavily polluted by inorganic and organic compounds. They are mainly compounds which appear in dissolved or suspended form flowing together with heavily laden floodwater, as well as compounds created as a result of reactions in the soil profile, mostly due to anaerobic transformation of organic matter. Heavy metals brought with flood waters are absorbed by the soil and also washed out from flood sediments by precipitation when the flood recedes. This paper presents the results of research on the effects of fertilization with ash from incineration or pyrolysis of biomass on the migration process of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd, Mn) in the arable layer of soil. It has been shown that the metals in the flood sediment migrate actively in the soil profile what leads to the enrichment of the soils, also in the case of the soil fertilization with biomass ash.
PL
Gleby, które były narażone na oddziaływanie wód powodziowych w znacznym stopniu mogą być zanieczyszczane związkami nieorganicznymi i organicznymi. Są to przede wszystkim te związki, które są nanoszone w formach rozpuszczonych lub zawieszonych wraz z napływającą silnie obciążoną wodą powodziową, jak i związki powstające w obrębie profilu glebowego, na drodze beztlenowych przemian materii organicznej. Me- tale ciężkie nanoszone wraz z wodami powodziowymi są sorbowane przez glebę, a także wymywane z nanosów powodziowych przez opady atmosferyczne po ustąpieniu zjawiska powodzi. W niniejszej pracy przedstawiono wyniki badań nad wpływem nawożenia popiołem z termicznego przekształcania biomasy na migrację metali ciężkich (Zn, Cu, Cr, Ni, Pb, Cd, Mn) w warstwie ornej gleb. Wykazano, iż metale pierwotnie zawarte w „nanosie” powodziowym migrują aktywnie w profilu gleby przyczyniając się do wzbogacenia badanych gleb, także w przypadku zastosowania nawożenia popiołem.
Słowa kluczowe
Rocznik
Strony
3--15
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
  • University of Opole, Department of Land Protection, ul. Oleska 22, 45-052 Opole
  • Institute of Environmental Engineering of the Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze
  • University of Opole, Department of Land Protection, ul. Oleska 22, 45-052 Opole
Bibliografia
  • [1] Antonkiewicz, J. (2009). Use incineration ash for binding heavy metals in soils. Environmental Protection and Natural Resources, 41, 398–405 (in Polish).
  • [2] Banach, A.M., Banach, K., Visser, E.J.W., Stępniewska, Z., Smits, A.J.M., Roelofs, J.G.M. & Lamers, L.P.M. (2009). Effects of summer flooding on floodplain biogeochemistry in Poland; implications for increased flooding frequency, Biogeochemistry, 92, 247–262.
  • [3] Barbusiński, K. & Nocoń, W. (2011). Heavy Metal Compounds in the Bottom Sediments of the River Klodnica (Upper Silesia), Environmental Pollution Control, 33, 1, 13–17 (in Polish).
  • [4] Bojakowska, I. (2003). Characteristic of polycyclic aromatic hydrocarbons and their occurrence in environment, Biuletyn Państwowego Instytutu Geologicznego 405, 5–28 (in Polish).
  • [5] Brandli, R.C., Bucheli, T.D., Kupper, D., Furrer, R., Stadelmann, F.X. & Tarradellas, J. (2005). Persistent organic pollutants in source-separated compost and its feedstock materials – a review for field study, Journal of Environmental Quality, 34, 3 735–760.
  • [6] Cappuyns, V. & Swennen, R. (2008). The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials, Journal of Hazardous Materials, 158, 185–195.
  • [7] Chen, B., Xuan, X., Zhu, L., Wang, J.J., Gao, Y., Yang, K., Shen, X. & Lou, B. (2004). Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China, Water Research, 38, 3558–3568.
  • [8] Ciesielczuk, T., Kusza, G. & Nemś, A. (2011). Fertilization with biomass ashes as a source of trace elements for soils, Environmental Protection and Natural Resources, 49, 219–227 (in Polish).
  • [9] Ciesielczuk, T., Kusza, G. & Poluszyńska, J. (2006). Assessment of PAHs and the total content of organic master In landfi ll leachate and groundwater, Ecological Chemistry and Engineering, 13, 11, 1225–1230.
  • [10] Ciesielczuk, T. & Kusza, G. (2009). Heavy metal assessment in solid municipal wastes composts as a border for fertilizing use, Environmental Protection and Natural Resources, 41, 347–354 (in Polish).
  • [11] Ciesielczuk, T., Kusza, G. & Karwaczyńska, U. (2011). Natural usage of bottom sediments on the base of existing law rules, Annual Set The Environment Protection (Rocznik Ochrona Środowiska), 13, 1327–1338 (in Polish).
  • [12] Dzierżanowski, K. & Gawroński, S.W. (2011). Analysis of heavy metals content in soil and dandelion leaves in the vicinity of a busy urban street using a handheld XRF spectrometer, Environmental Protection and Natural Resources, 50, 202–211 (in Polish).
  • [13] Hobbelen, P.H.F., van den Brink, P.J., Hobbelen, J.F. & van Gestel, C.A.M. (2006). Effects of heavy metals on the structure and functioning of detritivore communities in a contaminated floodplain area, Soil Biology & Biochemistry, 38, 1596–1607.
  • [14] Karczewska, A., Bogda, A., Wolszczak, M., Gałka, B., Szopka, K. & Kabała C. (2009). Copper, lead, and zinc in soils within the industrial part of Różanka district in Wrocław, Environmental Protection and Natural Resources, 41, 516–522 (in Polish).
  • [15] Kluska, H. (2004). Dynamics of soil sorption of polycyclic aromatic hydrocarbons in the vicinity of routes with intensive traffic, Archives of Environmental Protection, 30, 2, 83–93.
  • [16] Kochanowska, K. & Kusza, G. (2011). Influence of snow removal with chemicals on sorption properties of rendzinas in the town of Opole, Chemia, Dydaktyka, Ekologia, 16, 1–2, 41–45 (in Polish).
  • [17] Kusza, G. & Ciesielczuk, T. (2008). Selected physical and chemical properties of mineral alluvia formed within the area of Krapkowice county after the great flood in the year 1997, Annual Set The Environment Protection (Rocznik Ochrona Środowiska), 10, 697–704 (in Polish).
  • [18] Kuziemska, B. & Kalembasa, S. (2009). Influence of soil contamination with nickel and liming on lead and manganese contents in red clover biomass, Archives of Environmental Protection, 35, 1, 95–105.
  • [19] Kuziemska, B. & Kalembasa, S. (2010). Influence of liming and organic fertilization on yield and content of selected heavy metals in the biomass of orchard grass, Ecological Chemistry and Engineering, 17, 4–5, 423–430.
  • [20] Laskowski, S., Trawczyńska, A. & Tołoczko, W. (2005). Polycyclic aromatic Hydrocarbons (PAHs) in arable soils in proximity of communication tracts near Lodz City, Ecological Chemistry and Engineering, 12, 7, 709–715.
  • [21] Lis J. & Pasieczna, A. (1995). The geochemical atlas of Poland, Warszawa 1995 (in Polish).
  • [22] Markiewicz-Patkowska, J., Hursthouse, A. & Przybyla-Kij, H. (2005). The interaction of heavy metals with urban soils: sorption behavior of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit, Environment International, 31, 513–521.
  • [23] Mugni, H., Ronco, A. & Bonetto, C. (2011). Insecticide toxicity to Hyalella curvispina in runoff and stream water within a soybean farm (Buenos Aires, Argentina), Ecotoxicology and Environmental Safety, 74, 350–354.
  • [24] Oetken, M., Stachel, B., Pfenninger, M. & Oehlmann, J. (2005). Impact of a fl ood disaster on sediment toxicity in a major river system – the Elbe flood 2002 as a case study, Environmental Pollution, 134, 87–95.
  • [25] Oleszczuk, P., Baran, S., Baranowska, E. & Pranagal J. (2007). Content of polycyclic aromatic hydrocarbons in long-term fl ooded soil – model research, Ecological Chemistry and Engineering S, 14, 1, 109–116.
  • [26] Pasquini, M.W. & Alexander, M.J. (2004). Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture. The Science of the Total Environment, 319, 225–240.
  • [27] Rudis, M., Valenta, P., Valentova, J. & Nol, O. (2009). Assessment of the deposition of polluted sediments transferred by a catastrophic flood and related changes in groundwater quality, Journal of Hydrology, 369, 326–335.
  • [28] de Roo, A., Schmuck, G., Perdigao, V. & Thielen, J. (2003). The influence of historic land use changes and future planned land use scenarios on floods in the Oder catchment, Physics and Chemistry of the Earth, 28, 1291–1300.
  • [29] Rosik-Dulewska, Cz., Karwaczyńska, U. & Ciesielczuk, T. (2008). The impact of municipal landfi ll on the concentration of heavy metals in genetic soil horizons, [In] Management of Pollutant Emission from Landfi lls and Sludge; Pawłowski, Dudzińska & Pawłowski (eds), 117–124, Taylor&Francis Group, London 2008.
  • [30] Rosik-Dulewska, Cz., Karwaczyńska, U. & Ciesielczuk, T. (2010). Leaching of soluble components from fertilizers based on sewage sludge and ashes, [In] Environmental Engineering III; Pawłowski, Dudzińska & Pawłowski (eds), 417–423, Taylor&Francis Group, London 2010.
  • [31] Solanki R. & Dhankhar R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress, Biologia, 66, 2, 195–204.
  • [32] Stanisławska-Glubiak, E. & Korzeniowska, J. (2007). Remediation effect of lime and dolomite in copper and zinc contaminated soil, Ecological Chemistry and Engineering, 5–6, 14, 549–555.
  • [33] Steinnes, E., Grodzińska, K., Szarek-Łukaszewska, G. & Nygard, T. (2005). Concentrations of eight trace metals in natural surface soils: a comparison between Poland and Norway, Ecological Chemistry and Engineering, 5–6, 12, 603–609.
  • [34] Unger, I.M., Muzika, R.M. & Motavalli, P.P. (2010). The effect of flooding and residue incorporation on soil chemistry, germination and seedling growth, Environmental and Experimental Botany, 69, 113–120.
  • [35] Weber, J., Karczewska, A., Drozd, J., Liczna, M., Liczna, S., Jamroz, E. & Kocowicz, A. (2007). Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts, Soil Biology & Biochemistry, 39, 1294–1302.
  • [36] Wiśniowska-Kielian, B. & Czech, T. (2008). Post-effect dredged sediment on trace elements in maize (Zeamays L.) biomass, Ecological Chemistry and Engineering, 15, 14, 1173–1181.
  • [37] Witt, G. & Siegel, H. (2000). The Consequences of the Oder Flood in 1997 on the Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in the Oder River Estuary, Marine Pollution Bulletin, 40, 12, 1124–1131.
  • [38] Wolska, L. & Mędrzycka, K. (2009). Assessing the Ecotoxicity of the Bottom Sediments from the Sea Ports of Gdansk and Gdynia, Environmental Pollution Control, 31, 1, 49–52 (in Polish).
  • [39] Yang, Y., Ligouis, B., Pies, C., Grathwohl, P. & Hofmann, T. (2008). Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil, Environmental Pollution, 151, 121–129.
  • [40] Yao, F.X., Macías, F, Virgel, S., Blanco, F., Jiang, X. & Arbestain, M.C. (2009). Chemical changes in heavy metals in the leachates from Technosols, Chemosphere, 77, 29–35.
  • [41] Zhang, Ch., Wu, L., Luo, Y., Zhang, H. & Christie, P. (2008). Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties, Environmental Pollution, 151, 470–476.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f96b21a1-d804-4e05-82a7-53a36524b1c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.