Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The physical and chemical characteristics of microplastics make it easier for contaminants to adhere to the surface of the particles, acting as a vehicle for toxins to reach organisms after ingestion. The "most microbiome" comprises all the microorganisms present in our bodies as a whole because it has a big surface area and provides nutrientrich components for the digestive system's germs. In this investigation, metagenome analysis was used to determine the impact of long-term administration of High-Molecular Weight-Polyvinyl Chloride microplastics to young Wistar rats on the gut microbiota. Forty adult rats in total were employed, with 15 first-group and 15 second-group experimental groups and 10 controls. Pellets made specifically for feeding rats are produced. Following the procedure, the rats were anaesthetised with ketamine and xylasine before being dissected. Due to the small number of samples, alpha diversity in the gut metagenome study did not demonstrate statistically significant variations, but it did illustrate differences in bacterial diversity and density. In particular, it has been discovered that bacterial diversity is higher in experimental groups. According to the control groups, in the assay groups, the intestinal microbiome, dominated by Escherichia coli, Shigella, and Lactobacillus, was assessed as an increase in metabolic pathways related to microplastic exposure and pathogenicity in general. The findings demonstrate the necessity for extreme caution in the manufacture and use of plastics that pose a risk to the welfare of living things.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
393--402
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Department of Physiology, School of Medicine, Cukurova University, Adana, Türkiye
autor
- Department of Biophysics, School of Medicine, Cukurova University, Adana, Türkiye
autor
- Department of Medical Biology and Genetics, School of Medicine, Artuklu University, Mardin, Türkiye
autor
- Department of Pharmacology, School of Medicine, Cukurova University, Adana, Türkiye
autor
- Department of Physiology, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Türkiye
autor
- Department of Mathematics and Science Education, Faculty of Education, Akdeniz University, Antalya, Türkiye
autor
- Department of Industry, Faculty of Engineering, Boğaziçi University, İstanbul, Türkiye
Bibliografia
- Bai, J., Wan, Z., Zhang, Y. et al. (2022). Composition and diversity of gut microbiota in diabetic retinopathy. Front Microbiol., 13, 926926.
- Baltazar-Díaz, T., González-Hernández, L., Aldana-Ledesma, J.M. et al. (2022). Notable intestinal dysbiosis orchestrated by Escherichia/Shigella, decreased levels of SCFTA (short chain fatty acids) and alterations in metabolic pathways characterise patients with alcohol-decompensated cirrhosis in western Mexico. Annals of Hepatology, 27, 100812.
- Blacher, E., Bashiardes, S. Shapiro, H. et al. (2019). Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 572(7770), 474-480.
- Binda, C., Lopetuso, L.R., Rizzatti, G. et al. (2018). Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig Liver Dis., 50(5),421-428.
- Bolyen, E., Rideout, J.R., Dillon, M.R. et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol., 37(8), 852-857.
- Callahan, B.J., McMurdie, P.J., Rosen, M.J. et al. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat methods., 13(7), 581-583.
- Carbery, M., O'Connor, W., Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int., 115, 400-409.
- Coleman, O.I., Lobner, E.M., Bierwirth, S. et al. (2018). Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis. Gastroenterol., 155(5), 1539-1552, e1512.
- Dantzer, R., Cohen, S., Russo, S.J. et al. (2018). Resilience and immunity. Brain Behav Immun., 74, 28-42.
- Dominguez-Bello, M.G., Costello, E.K., Contreras, M. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS., 107(26), 11971-11975.
- Fasano, A., Visanji, N.P., Liu, L.W. et al. (2015). Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol., 14(6), 625-639.
- Ferreira, R.L.U., Sena-Evangelista, K.C.M., de Azevedo, E.P. et al. (2021). Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship with Diseases. Front Nutr., 8, 685317.
- Galloway, T.S., Cole, M., Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol., 1(5), 116.
- Gong, H., Zhang, S., Li, Q. et al. (2020). Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp Eye Res., 191, 107921.
- Gundogdu, S. (2018). Contamination of table salts from Turkey with microplastics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess., 35(5), 1006-1014.
- Hu, S., Li, A.& Huang, T. et al. (2019). Gut Microbiota Changes in Patients with Bipolar Depression. Adv Sci (Weinh), 6(14), 1900752.
- Jangi, S., Gandhi, R., Cox, L.M. et al. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nat Commun., 7, 12015.
- Jovanović, B., Gökdağ, K., Güven, O. et al. (2018). Virgin microplastics are not causing imminent harm to fish after dietary exposure. Mar Pollut Bull., 130, 123-131.
- Karami, A., Golieskardi, A., Choo, C.K. et al. (2018). Microplastic and mesoplastic contamination in canned sardines and sprats. Sci Total Environ., 612, 1380-1386.
- Karatay, E. (2019). Microbiota, probiotic and prebiotics. Anatolian Current Medical Journal, 1(3), 68-71.
- Koh, A., Molinaro, A., Ståhlman, M. et al. (2018). Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell, 175(4), 947-961.
- Küçük, M.P., Ülger, F. (2019). Microbiota and Intensive Care. Turk J Intensive Care., 17, 122-129. (in Turkish)
- Le Chatelier, E, Nielsen, T., Qin, J. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464), 541-546.
- Lehtiniemi, M., Hartikainen, S., Turja, R, et al. (2021). Exposure to leachates from post-consumer plastic and recycled rubber causes stress responses and mortality in a copepod Limnocalanus macrurus. Mar Pollut Bull., 173(Pt B), 113103.
- Ley, R.E., Backhed, F., Turnbaugh, P. et al. (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci USA., 102(31), 11070-11075.
- Ling, Z., Xiao, H., Chen, W. (2022). Gut microbiome: The cornerstone of life and health. Advanced Gut and Microbiome Research., 2022, 9894812.
- Liu, H., Liu, H., Liu, C. et al. (2022). Gut Microbiome and the Role of Metabolites in. the Study of Graves' Disease. Front Mol Biosci., 9, 841223
- Love, M.I., Huber, W., Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15(12), 550.
- Mandal, R.S., Saha, S., Das, S. (2015). Metagenomic surveys of gut microbiota. GPB., 13(3),148-158.
- McMurdie, P.J., Holmes, S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One., 8(4), e61217.
- Morgan, X.C., Tickle, T.L., Sokol, H. et al. (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol., 13(9), R79.
- Neish, A.S. (2014). Mucosal immunity and the microbiome. Ann Am Thorac Soc., 11(Suppl 1), S28-32.
- Qin, J., Li, R., Raes, J. et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65.
- Rastogi, S., Singh, A. (2022). Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol., 13, 1042189.
- Riquelme, E., Zhang, Y., Zhang, L. et al. (2019). Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 178(4), 795-806 e712.
- Scher, J.U., Sczesnak, A., Longman, R.S. et al. (2013). Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife, 2, e01202.
- Schloss, P.D. (2021). Amplicon Sequence Variants Artificially Split Bacterial Genomes into Separate Clusters. mSphere, 6(4), e0019121.
- Segata, N., Izard, J., Waldron, L. et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60.
- Silva, A.B., Bastos, A.S., Justino, C.I. et al. (2018). Microplastics in the environment: Challenges in analytical chemistry-A review. Anal Chim Acta., 1017, 1-19.
- Smith, M., Love, D.C., Rochman, C.M. et al. (2018). Microplastics in Seafood and the Implications for Human Health. Curr Environ Health Rep., 5(3), 375-386.
- Tian, R., Ning, D., He, Z. et al. (2020). Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome, 8, 1-15.
- Tibbetts, J.H. (2015) Managing marine plastic pollution: policy initiatives to address wayward waste. Environ Health Perspect., 123(4), A90-3.
- Turnbaugh, P.J., Ley, R.E., Mahowald, M.A. et al. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031.
- Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A. et al. (2017). Gut microbiome alterations in Alzheimer's disease. Sci Rep, 7(1), 13537.
- Waldor, M.K., Tyson, G., Borenstein, E. et al. (2015). Where next for microbiome research? PLoS Biol., 13(1), e1002050.
- Wexler, H.M. (2007). Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev., 20(4), 593-621.
- Whitman, W.B., Coleman, D.C., Wiebe, W.J. (1998). Prokaryotes: the unseen majority. Proc Natl Acad Sci USA., 95(12), 6578-6583.
- Xie, B.B., Li, M., Anantharaman, K. et al. (2021) Editorial: The Uncultured Microorganisms: Novel Technologies and Applications. Front Microbiol., 24(12), 756287.
- Yurtseve, M. (2019). Possible effects of nano- and microplastics on human health and ecosystem. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 5(2), 17-24. (in Turkish)
- Zhou, Y., Chen, C., Yu, H. (2020). Fecal Microbiota Changes in Patients with Postpartum Depressive Disorder. Front Cell Infect Microbiol., 10, 567268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f960f2a4-9ab9-41c4-ba7f-7498dc88e20a