PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Problems of an aerodynamic interference between helicopter rotor slipstream and an elevated heliport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An elevated heliport, as it has been defined by FAA (Federal Aviation Administration), is a heliport located on a rooftop or other elevated structure where the TLOF (touchdown and lift-off area) is at least 30 inches (76 cm) above the surrounding surface [1]. One of greatest advantages of such heliports is that they require less free space, which eases its build nearby existing buildings – especially in densely built-up areas. However, design of such heliports is more complicated, than ground level ones, while one must include an aerodynamic impact of the building below the elevated heliport and surrounding buildings. The aerodynamic interference between the helicopter and the buildings may result with decline of flight safety, due to sudden decrease of thrust (when flying above the edge of building) or because of increased turbulence in windy weather, wake behind surrounding buildings causing sudden gusts etc. Moreover, oscillations of pressure caused by helicopter rotor influence on the building structure also must be taken into account due to increased wear of upper part of the building or devices mounted on its roof (for example, elevator drives). These oscillation may also cause vibrations of building’s structure, which is especially important in case of medical heliports – which are a vast majority of elevated heliports (and heliports in general) – because of strict requirements for acceptable vibration level. The article is aimed on summarize aerodynamic issues, which should be taken into account during design of elevated heliport.
Twórcy
  • Łukasiewicz Research Network – Institute of Aviation Department of Aerodynamics Krakowska Av. 110/114, 02-256 Warsaw, Poland tel.: +48 22 8460011 ext. 312
  • Łukasiewicz Research Network – Institute of Aviation Department of Aerodynamics Krakowska Av. 110/114, 02-256 Warsaw, Poland tel.: +48 22 8460011 ext. 312
Bibliografia
  • [1] Federal Aviation Administration, Advisory Circular AC 150/5390-2B: Heliport Design, p. 98, 2006.
  • [2] Dodge, M., Brook, R., Helicopter dreaming : the unrealised plans for city centre heliports in the post-war period, 2014, available: http://www.bcu.ac.uk/Download/Asset/f196 b924-0666-4194-b34c-e2388e71463a.
  • [3] Corn, J. J., Horrigan, B., Yesterday’s tomorrows: past visions of the American future, Baltimore: Johns Hopkins University Press, 1984.
  • [4] De Voogt, A., Helidrome Architecture, Rotterdam: 010 Publishers, 2007.
  • [5] 5 killed as copter on Pan Am Building throws rotor blade, The New York Times, 1977.
  • [6] Copter Crash on Pan Am roof, Daily News, 1977.
  • [7] Leverton, J. W., Pike, A. C., Helicopter Noise – what is important from a community prospective?, in AHS 63rd Annual Forum Proceedings – AHS International, 2007.
  • [8] Rozporządzenie Ministra Zdrowia z dn. 15.03.2007 w sprawie szpitalnego oddziału ratunkowego, 2007.
  • [9] Rozporządzenie Ministra Zdrowia z dn. 3.11.2011 w sprawie szpitalnego oddziału ratunkowego, Poland 2011.
  • [10] Pierwsze lądowisko wyniesione w Polsce, Urząd Lotnictwa Cywilnego, 2011, online, available: http://ulc.gov.pl/pl/publikacje/wiadomosci/1259-pierwsze-ldowisko-wyniesione-w-polsce.
  • [11] Ewidencja lądowisk. Urząd Lotnictwa Cywilnego, 2018.
  • [12] Wąchalski, K., Ocena uwarunkowań konstrukcyjnych wyniesionych lądowisk dla helikopterów na budynkach szpitalnych realizowanych obecnie w Polsce, Transactions of the Institute of Aviation, Vol. 244, No. 3, pp. 179-191, 2016.
  • [13] Dziubiński, A., CFD analysis of rotor wake influence on rooftop helipad operations safety, Transactions of the Institute of Aviation, Vol. 242, No. 1, pp. 7-22, 2016.
  • [14] U.S. Joint Helicopter Safety Analysis Team, The Compendium Report: The U.S. JHSAT 195 Baseline of Helicopter Accident Analysis Volume I, 2011.
  • [15] Gibertini, G., Grassi, D., Parolini, C., Zagaglia, D., Zanotti, A., Experimental investigation on the aerodynamic interaction between a helicopter and ground obstacles, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 229, No. 8, pp. 1395-1406, 2015.
  • [16] Visingardi, A. et al., Forces on Obstacles in Rotor Wake – A GARTEUR Action Group, in 43rd European Rotorcraft Forum, 2017.
  • [17] Horn, J. F., Keller, J. D., Whitehouse, G. R., Mckillip, R. M., Analysis of Urban Airwake Effects on Heliport Operations At the Chicago Children’s Memorial Hospital, 2011.
  • [18] Łusiak, T., Dziubiński, A., Szumański, K., Interference Between Helicopter and Its Surroundings, Experimental and Numerical Analysis, Task Quarterly, Vol. 13, No. 4, pp. 379-392, 2009.
  • [19] Dziubiński, A., CFD analysis of wind direction influence on rooftop helipad operations safety, Transactions of the Institute of Aviation, Vol. 242, No. 1, pp. 23-35, 2016.
  • [20] Crozon, C., Steijl, R., Barakos, G. N., Numerical study of rotors in ship airwake, in 39th European Rotorcraft Forum, 2013.
  • [21] Lee, R. G., Zan, S. J., Wind tunnel testing of a helicopter fuselage and rotor in a ship airwake, in 29th European Rotorcraft Forum, 2003.
  • [22] Lee, D., Sezer-Uzol, N., Horn, J. F., Long, L. N., Simulation of Helicopter Shipboard Launch and Recovery with Time-Accurate Airwakes, Journal of Aircraft, Vol. 42, No. 2, pp. 448-461, 2005.
  • [23] Paquet, J. B., Bourez, J. P., Morgand, S., Formulation of Aerodynamic Forces on Helicopters in Non Uniform Flow with Scale Model Tests: Ground Effects, in 49th International Symposium of Applied Aerodynamics, 2014.
  • [24] Nathan, N. D., Green, R., Measurements of a rotor flow in ground effect and visualization of the brown-out phenomenon, in 64th Annual Forum of the American Helicopter Society, Montreal, Quebec, 2008.
  • [25] Johnson, B., Leishman, J. G., Sydney, A., Investigation of Sediment Entrainment Using Dual-Phase, High-Speed Particle Image Velocimetry, Journal of the American Helicopter Society, Vol. 55, No. 4, pp. 42003-1-42003-16, 2010.
  • [26] Ramasamy, M., Potsdam, M., Yamauchi, G. K., Measurements to Understand the Flow Mechanisms Contributing to Tandem-Rotor Outwash, in 71 American Helicopter Society Forum, Virginia Beach, VA, USA 2015.
  • [27] Witkowski, R., Budowa i pilotaż śmigłowców, 2nd ed., WKiŁ, Warszawa 1986.
  • [28] Curtiss, H. C., Erdman, W., Sun, M., Ground Effect Aerodynamics, Vertica, Vol. 11, No. 1/2, pp. 29-42, 1987.
  • [29] Brown, R. E., Whitehouse, G. R., Modelling rotor wakes in ground effect, Journal of the American Helicopter Society, Vol. 49, No. 3, pp. 238-249, 2004.
  • [30] Łusiak, T., Analiza numeryczna oraz badania eksperymentalne zjawiska ETL, Mechanika w Lotnictwie ML-XIV, Vol. 2, pp. 525-548, 2010.
  • [31] Smith, A., Bell, A., Hackett, D., Trade-offs in helipad sitting&design, Rowan Williams Davies & Irwin Inc. (RWDI), pp. 1-10, 2017.
  • [32] Bhagwat, M. J., Leishman, J. G., Stability Analysis of Helicopter Rotor Wakes in Axial Flight, Journal of the American Helicopter Society, Vol. 45, No. 3, pp. 165-178, 2000.
  • [33] Mejssner, M., Heliports dangerous for structure of buildings, Administrator, 24, 2011.
  • [34] PN-B-02171 standard, Estimation of impact of vibration on people in buildings, 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f960a25d-a03d-472c-a4ff-6d22a7f1e477
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.