PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solvent Extraction of Metal Ions from Sulfate Solutions Obtained in Leaching of Spent Ni-MH Batteries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nickel metal hydride batteries (Ni-MH) are used in many electronic equipment, like cell phones, computers, cameras as well as hybrid cars. Spent batteries can be a rich source of many metals, especially rare earth elements (REE), such as lanthanum (La), cerium (Ce), neodymium (Nd), praseodymium (Pr), samarium (Sm), gadolinium (Gd). Ni-MH batteries also contain iron (Fe) as well as non-ferrous metals, i.e. nickel (Ni), cobalt (Co), zinc (Zn), manganese (Mn), etc. Leaching of such waste with sulfuric acid solutions is one among many methods recovering of useful metals in hydrometallurgical processes. The main aim of this work was separation of metal ions from pregnant leach liquor (PLL) by solvent extraction using phosphorous compounds and ionic liquids (ILs). The initial pH of the aqueous solution was 0.1. Di (2-ethylhexyl) phosphoric acid (D2EHPA), bis (2,2,4-trimethylpentyl) phosphinic acid (Cyanex 272), and phosphoniumionic liquid - trihexyl (tetradecyl) phosphonium bis (2,4,4- trimethylpentyl) phosphinate (Cyphos IL 104) were used as the selective extractants. The initial concentration of the extractants in an organic phase was equal to 0.1 mol dm-3. The obtained results show that the highest extraction efficiency was obtained for Fe(III) and Zn(II) in extraction experiments with 0.1 M D2EHPA at pH of 0.1. Ni(II), Co(II) and REE remained in the aqueous solutions. In the next stage, REE were extracted with the mixture of 0.1 M Cyanex 272 and 0.1 M Cyphos IL 104 at pH equal to 3.8. Finally, Ni(II) and Co(II) ions were efficiently removed from the aqueous phase using 0.1 M solution of Cyphos IL 104 at pH around 5.4.
Rocznik
Strony
214--221
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Czestochowa University of Technology, 69 Dabrowskiego street 42-201 Czestochowa Poland
autor
  • Czestochowa University of Technology, 69 Dabrowskiego street 42-201 Czestochowa Poland
Bibliografia
  • 1. Bertuol, D.A., Bernardes, A.M., Tenorio, J.A.S. (2009). Spent NiMH batteries - The role of selective precipitation in the recovery of valuable metals. Journal of Power Sources, 193, pp. 914-923.
  • 2. Chagnes, A., Pospiech, B. (2013). A Brief Review On Hydrometallurgical Technologies For Recycling Spent Lithium-Ion Batteries. Journal of Chemical Technology and Biotechnology,88,pp. 1191-1199.
  • 3. Fernandes, A., Afonso, J.C., Dutra, A.J.B. (2013). Separation of Nickel(II), Cobalt(II) and Lanthanides from Spent Ni-MH Batteries by Hydrochloric Acid Leaching, Solvent Extraction and Precipitation. Hydrometallurgy 133, pp. 37-43.
  • 4. Gega, J., Gajda, B., Walkowiak, W. (2001). Separation of Co(II) and Ni(II) ions by Supported and Hybrid Liquid Membranes, Separation and Purification Technology, 22-23, pp. 551-558.
  • 5. Innocenzi, V., Ippolito, N.M., De Michelis, I., Prisciandaro, M. (2017). A Review Of The Processes and Lab-Scale Techniques For The Treatment Of Spent Rechargeable NimhBatteries. Journal of Power Sources, 362, pp. 202-218.
  • 6. Jha, M.K.; Kumari A.; Pand, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. (2016).Review On Hydrometallurgical Recovery Of Rare Earth Metals. Hydrometallurgy, 165, pp. 2- 26
  • 7. Kim, J.S., Kumar, B.N., Lee, J.Y., Kantam, M.L., Reddy, B.R. (2012). Separation and Recovery of Light Rare-Earths from Chloride Solutions using Organophosphorous based Extractants. Separation and Purification Technology, 47, pp. 1644-1650.
  • 8. Li, L., Xu, S., Wu, Z.J. (2009). Recovery of Ni, Co and Rare Earths from Spent Ni-Metal Hydride Batteries and Preparation of Spherical Ni(OH)2. Hydrometallurgy, 100, pp. 41-46
  • 9. Lister, T.E.; Wang, P.; Anderko, A. (2014). Recovery of Critical And Value Metals from Mobile Electronics Enabled by Electrochemical Processing. Hydrometallurgy, 149, pp. 228-237.
  • 10. Mishra, S.; Sahu, S.K. (2016). Solvent Extraction of Ce(III) from Nitric Acid Medium Using Binary Mixture of PC 88A and Cyanex921. Hydrometallurgy, 166, pp. 252- 259.
  • 11. Meshram, P., Pandey, B.D., Mankhand, T.R. (2016). Process Optimization and Kinetics for Leaching of Rare Earth Metals from the Spent Ni-Metal Hydride Batteries. Waste Management, 51, pp. 196-203
  • 12. Meshram,P., Somani, H., Pandey, B.D., Mankhand, T.R., Daveci, H., Abhilash (2017). Two Stage Leaching Process for Selective Metal Extraction from Spent Nickel Metal Hydride Batteries. Journal of Cleaner Production, 157, pp. 322-332.
  • 13. Pospiech, B., Walkowiak, W. (2005). Application of TBP in Selective Removal of Iron(III) in Solvent Extraction and Transport Through Polymer Inclusion Membranes Processes. Physicochemical Problems of Mineral Processing, 39, pp. 89-98.
  • 14. Pospiech, B., Walkowiak, W. (2010). Studies on Iron(III) Removal from Chloride Aqueous Solutions by Solvent Extraction and Transport Through Polymer Inclusion Membranes with D2EHPA. Physicochemical Problems of Mineral Processing, 44, pp. 195-204.
  • 15. Pospiech, B. (2013). Hydrometallurgical Recovery of Cobalt(II) from Acidic Chloride Sl. olutions by Transport Through Polymer Inclusion Membranes. Physicochemical Problems of Mineral Processing, 49, pp. 641-649.
  • 16. Pospiech, B. (2015). Studies On Extraction and Permeation of Cadmium(II) using Cyphos IL 104 as Selective Extractant and Ion Carrier. Hydrometallurgy, 154, pp. 88-94.
  • 17. Pospiech, B., Kujawski, W. (2015). Ionic Liquids as Selective Extractants and Ion Carriers of Heavy Metal Ions from Aqueous Solutions Utilized in Extraction and Membrane Separation. Review and Chemical Engineering, 31, pp. 179-191.
  • 18. Rodrigues, L.E., Mansur, M.B.(2010). Hydrometallurgical Separation of Rare Earth Elements, Cobalt and Nickel from Spent Nickel-Metal-Hydride Batteries. Journal of Power Sources, 195, pp. 3735-3741.
  • 19. Sobianowska-Turek, A. (2018). Hydrometallurgical Recovery of Metals: Ce, La, Co, Fe, Mn, Ni and Zn from the Stream of used Ni-MH Cells. Waste Management, 77, pp. 213-219.
  • 20. Swain, B.; Otu, E.O. (2011). Competitive Extraction of Lanthanides by Solvent Extraction using Cyanex 272: Analysis, Classification and Mechanism. Separation and Purification Technology, 83, pp. 82-90.
  • 21. Xie, F.; Zhang, T.A.; Dreisinger, D.; Doyle, F. (2014). A Critical Review on Solvent Extraction of Rare Earths from Aqueous Solutions. Minerals Engineering, 56, pp. 10-28
  • 22. Zhang, P., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T.M., Inoue, K. (1998). Hydrometallurgical Process for Recovery of Metal Values from Spent Nickel-Metal Hydride Secondary Batteries. Hydrometallurgy, 50, pp. 61-75.
  • 23. Zhao, Z.; Qiu, Z.; Yang, J.; Lu, S.; Cao, L.; Zhang, W.; Xu, Y. (2017). Recovery of Rare Earth Elements From Spent Fluid Catalytic Cracking Catalysts using Leaching and Solvent Extraction Techniques. Hydrometallurgy, 167, pp. 183-188.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9605edc-865b-49a8-a124-e5f1b5c79ce3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.