PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Processing Conditions on the Performance of UHMWPE-Fibre Reinforced Polymer Matrix Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ warunków prasowania na właściwości kompozytu na bazie włókien polietylenowych
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to analyze the influence of the main pressing parameter, i.e. temperature of a ultra-high molecular weight polyethylene (UHMWPE) fibrous sheet Dyneema ® HB26, on the performance of resultant UHMWPE-fibre reinforced polymer matrix composites intended for the manufacturing of ballistic personal protection. The main goal of this research was to connect the pressing temperature of the initial polyethylene fibrous material and the main performance feature, i.e. the ballistic behaviour of the resultant composites. The polyethylene composites, designed at various temperatures, were subjected to testing of ballistic, mechanical, thermal (DSC) and structural (FTIR) properties, as well as the surface topography by means of scanning electron microscopy (SEM). Attempts were made to determine the correlation between ballistic and mechanical properties of the various types of polyethylene composites designed and their structural and surface properties. Phenomena accompanying the pressing process of the fibrous polyethylene composites at various temperatures are discussed along with attempts to estimate the mechanisms of changes. This research allowed for the determination of optimal pressing conditions for fibrous polyethylene material to obtain a composite with optimal features for ballistic and personal protection application.
PL
Celem pracy była analiza wpływu temperatury prasowania nietkanego wyrobu polietylenowego (UHMWPE) Dyneema® HB26 na właściwości wytworzonego kompozytu przeznaczonego do balistycznych ochron osobistych. Głównym celem było określenie współzależności miedzy temperaturą prasowania a odpornością balistyczną otrzymanych kompozytów. Wytworzone w różnych temperaturach kompozyty poddano badaniom odporności balistycznej oraz właściwości: mechanicznych, termicznych i strukturalnych, i także badaniom morfologii powierzchni. Podjęto próbę określenia zależności pomiędzy odpornością balistyczną, a właściwościami mechanicznymi zaprojektowanych kompozytów polietylenowych, jak również ich właściwościami strukturalnymi i powierzchniowymi. Przedyskutowano zjawiska towarzyszące prasowaniu kompozytów polietylenowych w różnych temperaturach, a nastepniepodjęto próbę określenia mechanizmów tych procesów oraz oszacowania zmian zachodzących w kompozytach. Badania pozwoliły na określenie optymalnej wartości temperatury prasowania tego wyrobu.
Rocznik
Strony
112--120
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Institute of Security Technology MORATEX, Łódź, Poland
autor
  • Institute of Security Technology MORATEX, Łódź, Poland
  • Institute of Security Technology MORATEX, Łódź, Poland
  • Institute of Security Technology MORATEX, Łódź, Poland
Bibliografia
  • 1. Van Dingenen JLJ. Gel-spun high-performance polyethylene fibres. In: Hearle JWS (ed) High-performance fibers. Cambridge: Woodhead Publishing Limited, 2004, pp. 69 – 80.
  • 2. Redlich G, Fortuniak K. The way of use of waste of ballistic polyethylene products. Tworzywa Sztuczne i Chemia 2010; 3: 8.
  • 3. Chin J, Petit S, Forster A, at al. Effect of artificial perspiration and cleaning chemical’s on the mechanical and chemical properties of ballistic materials. Journal of Applied Polymer Science 2009; 113: 567-584.
  • 4. Marissen R. Design with Ultra Strong Polyethylene Fibers. Materials Sciences and Applications 2011; 2: 319-330.
  • 5. Fink JK. Handbook of engineering and specialty thermoplastics, Volume 1: Polyolefins and Styrenics New Jersey: John Wiley & Sons, Inc. Hoboken. Salem Massachusetts: Scrivener Publishing LLC, 2010, pp. 82-83.
  • 6. Vlasblom MP and van Dingenen J. The manufacture, properties and applications of high strength, high modulus polyethylene fibres. In: Bunsell A (ed) Handbook of tensile properties of textile and technical fibres. Cambridge: Woodhead Publishing, 2009, pp. 437-485.
  • 7. Jacobs MJN, van Dingenen JLJ. Ballistic protection mechanisms in personal armour. Journal of Materials Science 2001; 36: 3137-3142.
  • 8. Chocron S, Pintor A, Gálvez F, Roselló C, Cendón D, Sánchez-Gálvez V. Lightweight polyethylene non-woven felts for ballistic impact applications: material characterization. Composites Part B: Engineering 2008; 39: 1240-1246.
  • 9. Ong CW, Boey CW, Hixson RS, Sinibaldi JO. Advanced layered personnel armor. Int J Impact Eng 2011; 38: 369-383.
  • 10. Fejdyś M, Łandwijt M, Habaj W, Struszczyk MH. Ballistic helmet development using UHMWPE fibrous materials. Fibres & Textiles in Eastern Europe 2015; 23, 1(109): 89-97.
  • 11. David NV, Gao X-L, Zheng JQ. Ballistic resistant body armor: contemporary and prospective materials and related protection mechanisms. Appl Mech Rev 2009; 5: 62.
  • 12. Attwood JP, Khaderi SN, Karthikeyan K, et al. The out-of-plane compressive response of Dyneema® composites. Journal of the Mechanics and Physics of Solids 2014; 70: 200-226.
  • 13. Iremonger MJ. Polyethylene composites for protection against high velocity small arms bullets. In: Proceedings of the 18th International Symposium on Ballistics (ed WG Reinecke), San Antonio TX: Technomic Publishing Company Inc, 1999, pp. 946–954.
  • 14. Cunniff PM. Dimensionless parameters for optimization of textile-based body armor systems. In:. Proceedings of the 18th International Symposium on Ballistics (ed WG Reinecke), San Antonio TX: Technomic Publishing Company Inc, 1999, pp. 1303-10.
  • 15. Morye SS, Hine PJ, Duckett RA, Bacon DJ, Ward IM. Modelling of the energy absorption by polymer composites upon ballistic impact. Compos Sci Technol 2000; 60: 2631-2642.
  • 16. Jacobs MJN, Van Dingenen JLJ. Ballistic protection mechanisms in personal armour. J Mater Sci 2001; 36: 3137-3142.
  • 17. Karthikeyan K, Russell BP, Fleck NA, Wadley HNG, Deshpande VS. The effect of shear strength on the ballistic response of laminated composite plates. Eur J Mech A/Solids 2013;42:35-53.
  • 18. O’Masta MR, Deshpande VS, Wadley HNG. Mechanisms of projectile penetration in Dyneema® encapsulated aluminum structures. Int J Impact Eng 2014; 74: 16–35.
  • 19. Polak J. Dyneema body armours. Techniczne Wyroby Włókiennicze 1997; 1: 5-9.
  • 20. Vargas-Gonzalez L, Walsh SM, Wolbert J. Impact and ballistic response of hybridized thermoplastic laminates. Technical Report No. ARL-MR-0769, August 2011. Army Research Laboratory: Aberdeen Proving Ground MD.
  • 21. Vargas-Gonzalez LR, Walsh SM, Gurganus JC. Examining the relationship between ballistic and structural properties of lightweight thermoplastic unidirectional composite laminates. Technical Report No. ARL-RP-0329, August 2011. Army Research Laboratory: Aberdeen Proving Ground MD.
  • 22. Lee BL, Walsh TF, Won ST, Patts HM, Song JW, Mayer AH. Penetration failure mechanisms of armor-grade fiber composites under impact. J Compos Mater 2001; 35: 1605-1633.
  • 23. Greenhalgh E, Bloodworth VM, Iannucci L, Pope D. Fractographic observations on Dyneema® composites under ballistic impact. Compos Part A 2013; 44: 51-62.
  • 24. Russell BP, Karthikeyan K, Deshpande VS, Fleck NA. The high strain rate response of ultrahigh molecular-weight polyethylene: from fibre to laminate. Int J Impact Eng 2013; 60: 1-9.
  • 25. O’Masta MR, Deshpande VS, Wadley HNG. Defect controlled transverse compressive strength of polyethylene fiber laminates. International Journal of Solids and Structures 2015; 52: 130–149
  • 26. Shujia L, Jia W, Yanping W, Yimin W. Improving the ballistic performance of ultrahigh molecular weight polyethylene fiber reinforced composites using conch particles. Materials and Design 2010; 31: 1711-1715.
  • 27. PN-EN ISO 2286-1:2000. Rubber- or plastics- coated fabrics – Determination of roll characteristics – Part 1: Methods for determination of length, width and net mass.
  • 28. PN-EN ISO 2286-2:1999. Rubber- or plastics- coated fabrics – Determination of roll characteristics – Part 2: Methods for determination of total mass per unit area, mass per unit area of coating and mass per unit area of substrate.
  • 29. PN-EN ISO 2286-3:2000. Rubber- or plastics- coated fabrics – Determination of roll characteristics – Part 3: Method for determination of thickness.
  • 30. PN-EN ISO 1421:2001. Rubber- or plastics-coated fabrics – Determination of tensile strength and elongation at break.
  • 31. PN-EN ISO 4674-1:2005. Rubber- or plastics-coated fabrics – Determination of tear resistance – Part 1: Constant rate of tear methods.
  • 32. PBB-31:2014. Ballistic tests – Determination of ballistic resistance of sample set.
  • 33. PN-V-87000:2011. Light ballistic armours – Ballistic protection vests – Requirements and tests.
  • 34. PN-EN ISO 2039-2. Plastics – Determination of hardness – Part 2: Rockwell hardness.
  • 35. Fejdyś M, Łandwijt M, Struszczyk MH. Effect of accelerated ageing conditions on the degradation process of dyneema® polyethylene composites. Fibres & Textiles in Eastern Europe 2011;19, 1(84):60-65.
  • 36. Sungsik K, Young CN. Effect of radiation on ultra high molecular weight polyethylene (UHMWPE). In: Controlling of degradation effects in radiation processing of polymers. Vienna: IAEA, 2009, pp. 85-94.
  • 37. Zieliński W. The spectroscopic methods and their application for the identification of organic compound. Warszawa: WNT, 2000.
  • 38. Rocha M, Mansur A, Mansur H. Characterization and accelerated ageing of UHMWPE used in orthopedic prosthesis by peroxide. Materials 2009; 2: 562-576.
  • 39. Fejdyś M, Cichecka M, Łandwijt M, Struszczyk MH. Prediction of the durability of composite soft ballistic inserts. Fibres & Textiles in Eastern Europe 2014; 22, 6(108): 81-89.
  • 40. Karthikeyan K, Russell BP, Fleck NA, Wadley HNG, Deshpande VS. The effect of shear strength on the ballistic response of laminated composite plates. European Journal of Mechanics A/Solids 2013; 42: 35-53.
  • 41. Attwood JP, Khaderi SN, Karthikeyan K, Fleck NA, O׳Masta MR, Wadley HNG, Deshpande VS. The out-of-plane compressive response of image composites. Journal of the Mechanics and Physics of Solids 2014; 70: 200-226.
  • 42. Guelcher SA, Gallagher KM, Didier JE, Klinedinst DB, Doctor JS, Goldstein AS, Wilkes GL, Beckman EJ, Hollinger JO. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomaterialia 2005; 1: 471–478.
  • 43. Karacan I. Structure-property relationships in high-strength high-modulus polyethylene fibres. Fibers & Textiles in Eastern Europe 2005; 13: 15
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f95ef0b8-804e-4089-b2cd-3de04b0ee1f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.