Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, CePO4 and CeCO3F were prepared by hydrothermal synthesis based on the ratio of bastnaesite to monazite in the process mineralogy of Baiyun Ebo rare earth concentrate. A comparison of the two treatments, ball milling and ball milling sulphation, revealed that the denitrifi cation efficiency of the catalysts treated with ball milling sulphation increased by 20 percentage points, compared to those treated without sulphation, with denitrification efficiencies of up to 80%. The surface properties, redox properties and catalytic mechanism of the samples before and after the sulphation treatment were analyzed, by using XRD, NH3-TPD, H2-TPR, XPS and in situ IR characterization. The results showed that the CeF3 diffraction peaks in the XRD patterns disappeared in the sulphated samples, NH3-TPD showed that the adsorption capacity of NH3 on the surface of the samples was enhanced, and the introduction of sulphuric acid provided a large number of acidic sites on the catalyst surface, among which the Lewis acidic sites might be more favorable for the promotion of SCR reaction. The acidification of sulphuric acid greatly increases the redox capacity of the catalyst, and the interconversion between Cen+ was enhanced. XPS showed a significant increase in the amount of adsorbed oxygen on the surface of the sample. The presence of -NO2, an important intermediate in the L-H mechanism, was also detected by IR analysis. reactant species during the L-H mechanism reaction were monodentate nitrate, bridged nitrate and NH4+ species produced by NH3 adsorption on the Brønsted acidic site of the catalyst surface.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--22
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
- North China Electric Power University, School of Environmental Science and Engineering, Baoding 071000, Hebei, China
- Inner Mongolia University of Science&Technology, School of Energy and Environment, Baotou 014010, Inner Mongolia, China
autor
- North China Electric Power University, School of Environmental Science and Engineering, Baoding 071000, Hebei, China
autor
- Inner Mongolia University of Science&Technology, School of Energy and Environment, Baotou 014010, Inner Mongolia, China
Bibliografia
- 1. Deng, L. & Zhang, Z. (2018). Assessing the features of extreme smog in China and the differentiated treatment strategy. Proceedings of the Royal Society A: Mathemat. Phys. Engin. Sci. 474(2209), 20170511. DOI: 10.1098/rspa.2017.0511.
- 2. Li, X.H. (2017). Optimization and reconstruction technology of SCR flue gas denitrification ultra low emission in coal fired power plant. IOP Conference Series: Mater. Sci. Engin. 231, 012111. DOI: 10.1088/1757-899X/231/1/012111.
- 3. Zhu, M., Lai, J.K., Tumuluri, U., Wu, Z. & Wachs, I.E. (2017). Nature of Active Sites and Surface Intermediates during SCR of NO with NH3 by Supported V2O5–WO3/TiO2 Catalysts. J. Am. Chem. Soc. 139(44), 15624–15627. DOI: 10.1021/jacs.7b09646.
- 4. Xie, S.Z, Li, L.L, Jin, L.L, Wu, Y., Lin, H., Qin, Q., Liu, J., Dong, L. & Li, B. (2020). Low temperature high activity of M(M=Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Appl. Surf. Sci. 515, 146014. DOI: 10.1016/j.apsusc.2020.146014.
- 5. You, X.C., Sheng, Z.Y., Yu, D.Q., Yang, L., Xiao, X. & Wang, S.(2017). Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature. Appl. Surf. Sci. 423, 845–854. DOI: 10.1016/j.apsusc.2017.06.226
- 6. Guo, D.Y., Guo, R.T., Duan, C.P., Liu, Y.Z., Wu, G.I., Qin, Y. & Pan, W.G. (2021). Enhanced K resistance of Cu-SSZ-13 catalyst for NH3-SCR reaction by the modification with Ce. Molec. Catal. 502, 111392. DOI: 10.1016/j.mcat.2021.111392.
- 7. Ma, Y.Y, Li, Z.F, Zhao, N. & Teng, Y.L. (2020). One-pot synthesis of Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts for NH3-SCR reaction with SO2 resistance. J. Rare Earths. 39(10), 1217–1223. DOI: 10.1016/j.jre.2020.07.028.
- 8. Zhang, L., Qu, H.X., Du, T., Ma,W. & Zong, Q. (2016). H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni–Ce–La composite oxide nanocrystals in NH3-SCR. Chem. Engin. J. 296, 122–131. DOI: 10.1016/j.cej.2016.03.109.
- 9. Wang Y., Li, G.G., Zhang, S.Q., Zang, X.Y., Zhang, X. & Hao, Z.P. (2020). Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study. Chem. Engin. J. 393, 124782. DOI: 10.1016/j.cej.2020.124782.
- 10. Ma, S., Tan, H., Li, Y., Wang, P., Zhao,Ch., Niu, X. & Zhu, Y. (2020). Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (y = 0.1, 0.2, 0.3) catalysts. Chemo-sphere. 243, 125309. DOI: 10.1016/j.chemosphere.2019.125309.
- 11. Chang, H., Ma, L., Yang, S., Li, J., Chen, L., Wang, W. & Hao, J. (2013). Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. J. Hazard. Mater. 262, 782–788. DOI: 10.1016/j.jhazmat.2013.09.043.
- 12. Lei, M., Chang, Y.S., Mohit, N., Xiaoyin, CH., Junhua, L. & Szwank, J.W. (2018). Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NOx with NH3. Appl. Catal. B: Environ. 232, 246–259. DOI: 10.1016/j. apcatb.2018.03.065.
- 13. Zhou, Z.Z., Lan, J.M., Liu, L.J. & Liu, Z. (2021). Enhanced alkali resistance of sulfated CeO2 catalyst for the reduction of NOx from biomass fired flue gas. Catal. Commun. 149, 106230. DOI: 10.1016/j.catcom.2020.106230.
- 14. Chen, W.S., Zhang, C.G. & Hu, F.L, et al. (2019). Study on the denitrification performance of sulfuric acid modified sintered ore catalysts. Sintered pellets. 44(5), 6. DOI: 10.13403/j. sjqt.2019.05.079.
- 15. Zhang, Q.L., Zhang, J.H., Song, Z.X., Ning, P., Li, H. & Liu, X. (2016). A novel and environmentally friendly SO42–/CeO2 catalyst for the selective catalytic reduction of NO with NH3. J. Ind. Engin. Chem. 34, 165–171. DOI: 10.1016/j.jiec.2015.11.006.
- 16. Cong, Q,L,. Chen, L.,Wang, X., Ma, H., Zhao, J., Li, S., Hou,Y. & Li, W., (2020). Promotional effect of nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of NO with NH3-ScienceDirect. Chem. Engin. J. 379, 122302–122302. DOI: 10.1016/j.cej.2019.122302.
- 17. Duan, C.P., Guo, R.T., Liu, Y.Z., Wu, G.L., Miao Y., Gu, J. & Pan, W., (2020). Enhancement of kalium resistance of Ce-Ti oxide catalyst for NH3-SCR reaction by modification with holmium. J. Rare Earths. DOI: 10.1016/j.jre.2020.10.018.
- 18. Zhang, Y., Qu, R.Y., Su, W.K. & Li, J.H. (2015). A novel Ce–Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl. Catal. B: Environ. 176, 338–346. DOI: 10.1016/j.apcatb.2015.04.023.
- 19. Dong, W.K., Somin, L., Jongsik, K., Kwan Y.L., Young, L. & Heon P.H. (2021). Influence of support composition on enhancing the performance of Ce-V on TiO2 comprised tungsten-silica for NH3-SCR. Catalysis Today. 359, 112–123. DOI: 10.1016/j.cattod.2019.07.002.
- 20. Zeng, Y.Q., Song, W., Wang,Y., Zhang, S., Wang, T. & Zhong Q. (2020). Novel Fe-doped CePO4 catalyst for selective catalytic reduction of NO with NH3: The role of Fe3+ ions. J. Hazard. Mater. 383, 121212. DOI: 10.1016/j.jhazmat.2019.121212.
- 21. Qian, J.N., et al. (2017). Study on the Catalytic performance of CO reduction of NO over copper-based catalysts supported by hydrotalcite. J. Guangxi Univ. (Natural Science edition). 42(05), 1843–1850.
- 22. Pena, D.A., Uphade B.S., Reddy, E.P. & Smirniotis, P.G. (2004). Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J. Phys. Chem. B. 108(28), 9927–9936. DOI: 10.1021/jp0313122.
- 23. Zeng, Y.Q., Wang,Y., Zhang, S., Zhong, Q. & Rong, W., Li, X. (2018). One-pot synthesis of ceria and cerium phosphate (CeO2-CePO4) nanorod composites for selective catalytic reduction of NO with NH3: Active sites and reaction mechanism. J. Colloid Inter. Sci. 524, 8–15. DOI: 10.1016/j.jcis.2018.04.003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f95b6ede-fb2a-426f-acda-2196dcc3d8a6