PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of EV charging stations integration on power system performance

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ integracji stacji ładowania pojazdów elektrycznych na wydajność systemu zasilania
Języki publikacji
EN
Abstrakty
EN
Electric vehicles partner with clean energy to prevent carbon emissions attributed to internal combustion engine-powered traditional vehicles, gas-based power plants, and other environmental pollution sources. At the same time, using electric vehicles adversely affects power infrastructure; hence, analytical research is crucial to assess such effects. This paper is based on several scenarios comprising a rising number of vehicles connected to the electrical system. The adverse effects of electric vehicle charging stations connected to the electrical infrastructure were diagnosed. MATLAB/Simulink was used for simulation and modelling to highlight any effects. Vehicle charging points and their impact on the electrical system’s total harmonic distortion were studied; a single-vehicle connected to the system added 2.44% to the THD, which increased to 12.69% when twelve vehicles were connected simultaneously. Moreover, charging operations breached the recommended voltage standards; a 0.95 P.U. voltage was recorded. Additionally, charging station integration reduced the power factor of the electrical system; this phenomenon was assessed.
PL
Pojazdy elektryczne współpracują z czystą energią, aby zapobiegać emisjom dwutlenku węgla przypisywanym tradycyjnym pojazdom napędzanym silnikami spalinowymi, elektrowniom gazowym i innym źródłom zanieczyszczenia środowiska. Jednocześnie korzystanie z pojazdów elektrycznych niekorzystnie wpływa na infrastrukturę energetyczną; stąd kluczowe znaczenie dla oceny takich efektów mają badania analityczne. Niniejszy artykuł opiera się na kilku scenariuszach obejmujących rosnącą liczbę pojazdów podłączonych do systemu elektrycznego. Zdiagnozowano niekorzystne skutki stacji ładowania pojazdów elektrycznych podłączonych do infrastruktury elektrycznej. MATLAB/Simulink został wykorzystany do symulacji i modelowania w celu podkreślenia wszelkich efektów. Zbadano punkty ładowania pojazdów i ich wpływ na całkowite zniekształcenia harmoniczne układu elektrycznego; pojedynczy pojazd podłączony do systemu dodał 2,44% do THD, które wzrosło do 12,69%, gdy dwanaście pojazdów było jednocześnie podłączonych. Ponadto operacje ładowania naruszyły zalecane normy napięcia; 0,95 j.m. rejestrowano napięcie. Dodatkowo integracja stacji ładowania zmniejszyła współczynnik mocy systemu elektrycznego; zjawisko to zostało ocenione.
Rocznik
Strony
227--231
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical Engineering, College of Engineering, University of Mosul, Iraq
  • Department of Electrical Engineering, College of Engineering, University of Mosul, Iraq
  • Department of Electrical Engineering, College of Engineering, University of Mosul, Iraq
Bibliografia
  • [1] N. M. Prasit PHOOSOMMA, Tanes TANITTEERAPAN, Tanapon Tamrongkunanan, “Application of a Single Supercapacitor for Driving an Electric Vehicle,” Prz Elektrotechniczny, no. 8, pp. 34–40, 2022.
  • [2] N. O. Kapustin and D. A. Grushevenko, “Long-term electric vehicles outlook and their potential impact on electric grid,” Energy Policy, vol. 137, no. April, p. 103-111, 2020.
  • [3] S. Habib, M. Kamran, and U. Rashid, “Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks - A review,” J Power Sources, vol. 277, pp. 205–214, 2015.
  • [4] G. A. Putrus, P. Suwanapingkarl, D. Johnston, E. C. Bentley, and M. Narayana, “Impact of electric vehicles on power distribution networks,” 5th IEEE Veh Power Propuls Conf VPPC ’09, pp. 827–831, 2009.
  • [5] H. Morais, T. Sousa, Z. Vale, and P. Faria, “Evaluation of the electric vehicle impact in the power demand curve in a smart grid environment,” Energy Convers Manag, vol. 82, pp. 268–282, 2014.
  • [6] L. Liu, Y. Zhang, C. Da, Z. Huang, and M. Wang, “Optimal allocation of distributed generation and electric vehicle charging stations based on intelligent algorithm and bi-level programming,” Int Trans Electr Energy Syst, vol. 30, no. 6, pp.1–21, 2020.
  • [7] H. Yu and A. L. Stuart, “Impacts of compact growth and electric vehicles on future air quality and urban exposures maybe mixed,” Sci Total Environ, vol. 576, pp. 148–158, 2017.
  • [8] Y. Miao, P. Hynan, A. Von Jouanne, and A. Yokochi, “Currentli-ion battery technologies in electric vehicles and opportunities for advancements,” Energies, vol. 12, no. 6, pp. 1–20, 2019.
  • [9] A. K. Verma, B. Singh, and D. T. Shahani, “Grid to vehicle and vehicle to grid energy transfer using single-phase half bridge boost AC-DC converter and bidirectional DC - DC converter, Int J Eng Sci Technol, vol. 4, no. 1, pp. 46–54, 2018.
  • [10] F. M. Shakeel and O. P. Malik, “Vehicle-To-Grid Technology in a Micro-grid Using DC Fast Charging Architecture,” 2019 IEEE Can Conf Electr Comput Eng CCECE 2019, no. October, 2019.
  • [11] W. Zhong, R. Yu, S. Xie, Y. Zhang, and D. K. Y. Yau, “On Stability and Robustness of Demand Response in V2G Mobile Energy Networks,” IEEE Trans Smart Grid, vol. 9, no. 4, pp. 3203–3212, 2018.
  • [12] M. A. Sayed, R. Atallah, C. Assi, and M. Debbabi, “Electric vehicle attack impact on power grid operation,” Int J Electr Power Energy Syst, vol. 137, pp. 1–28, 2022.
  • [13] J. Wang, C. Liu, D. Ton, Y. Zhou, J. Kim, and A. Vyas, “Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power,” Energy Policy, vol. 39, no. 7, pp. 4016–4021, 2011.
  • [14] J. P. Trovão, P. G. Pereirinha, L. Trovão, and H. M. Jorge, “Electric vehicles chargers characterization: Load demand and harmonic distortion,” Proceeding Int Conf Electr Power Qual Util EPQU, pp. 694–700, 2011.
  • [15] H. F. Farahani, A. Rabiee, and M. Khalili, “Plug-in electric vehicles as a harmonic compensator into microgrids,” J Clean Prod, vol. 159, pp. 388–396, 2017.
  • [16] A. Abaspahic, M. Saric, J. Hivziefendic, and T. Konjic, “Impact of Complementary Integration of Electric Vehicle Charging Stations and Photovoltaics on Voltage Quality and Voltage Stability,” 2021 20th Int Symp INFOTEH-JAHORINA, INFOTEH 2021 - Proc, no. March, pp. 17–19, 2021.
  • [17] S. Aggarwal and A. K. Singh, “Impact analysis of electric vehicle charging station integration with distributed generators on power systems,” Int J Circuit Theory Appl, vol. 49, no. 6, pp. 1811–1827, 2021.
  • [18] A. Hilshey, P. Hines, P. Rezai, and J. Dowds, “Estimating the impact of electric vehicle smart charging on distribution transformer aging,” IEEE Trans Smart Grid, vol. 4, no. June, pp. 905–913, 2013.
  • [19] M. R. A. Ashish Kumar Karmaker, Sujit Roy, “Analysis of the impacts of Electric Vehicle Charging Station in Bangladesh,” ECCE, IEEE Conf, pp. 7–9, 2019.
  • [20] B. Marah, Y. R. Bhavanam, G. A. Taylor, and A. O. Ekwue, “Impact of electric vehicle charging systems on low voltage distribution networks,” Proc - 2016 51st Int Univ Power Eng Conf UPEC 2016, vol. 2017-Janua, pp. 1–6, 2016.
  • [21] C. Gong et al., “Research on influence and resolution of the relay protections with electric vehicle charging station integrating into distribution network,” Int J Hydrogen Energy, vol. 42, no. 29, pp. 18747–18753, 2017.
  • [22] L. Rubino, C. Capasso, and O. Veneri, “Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility,” Appl Energy, vol. 207, pp. 438–464, 2017.
  • [23] S. M. Khudher, I. Bin Aris, N. F. Mailah, and R. K. Sahbudin, “Analysis of AC - To - DC uncontrolled converters harmonics for electric vehicles applications,” Pertanika J Sci Technol, vol. 25, no. S, pp. 283–290, 2017.
  • [24] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans Power Electron, vol. 28, no. 5, pp. 2151–2169, 2013.
  • [25] H. S. Das, M. M. Rahman, S. Li, and C. W. Tan, “Electric vehicles standards, charging infrastructure, and impact on gridintegration: A technological review,” Renew Sustain Energy Rev, vol. 120, 2020.
  • [26] A. M. Eltamaly, A. Y. Abdelaziz, and A. G. Abo-Khalil, Control and Operation of Grid-Connected Wind Energy Systems. 2021.
  • [27] M. Bilal, M. Rizwan, I. Alsaidan, and F. M. Almasoudi, “AI-Based Approach for Optimal Placement of EVCS and DG with Reliability Analysis,” IEEE Access, vol. 9, pp. 154204–154224, 2021.
  • [28] D. M. Michał SIERSZYŃSKI, Łukasz CHEŁCHOWSKI, Bogdan KACZMARCZYK, Paweł MUSZYŃSKI, “Analiza wybranych przepisów i norm istotnych z punktu widzenia projektowania autobusów elektrycznych część 1,” Prz Elektrotechniczny, no. 8, pp. 158–162, 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f95a5bc6-6a51-4c8c-bb3c-35a11bdea6f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.