PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grain Boundary Wetting and Material Performance in an Industrial EZ33A Mg Cast Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The grain boundary wetting phase transition in an industrial EZ33A cast alloy is studied. 12% of the grain boundaries are completely wetted at the temperature slightly higher than the eutectic transformation temperature (530°C). The fraction of wetted grain boundaries increases with temperature, reaches a maximum of 85% at 570°C, and does not change further until the alloy melts. In the as-cast state, the alloy has low ductile properties at the ambient temperature. The microstructure in the as-cast state corresponds to the wetting state at about 560°C, which indicates that the cooling rate in casting is almost equal to that in quenching. The volume and the surface fraction of the second phase and the hardness measured at the least wetted state of samples point toits good machinability. The wetting data are used to suggest a sequence of heat treatment and machining for processing EZ33A alloy parts.
Słowa kluczowe
Twórcy
  • National University for Science and Technology “Misis” (Nitu Misis), Moscow, Russia
  • Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia
autor
  • Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia
  • National University for Science and Technology “Misis” (Nitu Misis), Moscow, Russia
  • Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia
  • Institute of Experimental Mineralogy, Chernogolovka, Russia
autor
  • Pedagogical University of Cracow, Faculty of Mathematics, Physics and Technical Science, Institute of Technology, Kraków, Poland
Bibliografia
  • [1] C. J. Bettles, M. A. Gibson, Adv. Eng. Mater. 5, 859-865 (2003).
  • [2] J. Li, R. Chen, Y. Ma, W. Ke, Journal of Magnesium and Alloys. 1, 346-351 (2013).
  • [3] J. Zheng, Q. Wang, Z. Jin, T. Peng, Materials Science and Engineering. A 527, 4605-4612 (2010).
  • [4] J. Zhang, Z. X. Guo, F. Pan, Z. Li, X. Luo, Materials Science and Engineering. A 456,43-51 (2007).
  • [5] J. E. Morgan, B. L. Mordike, MTA. 12, 1581-1585 (1981).
  • [6] K. Bryła, J. Morgiel, M. Faryna, K. Edalati, Z. Horita, Materials Letters. 212, 323-326 (2018).
  • [7] E. L. S. Solomon, E. A. Marquis, Materials Letters 216, 67-69 (2018).
  • [8] S. Amira, J. Huot, Journal of Alloys and Compounds 520, 287-294 (2012).
  • [9] D. Thomas-Whittington, V. Srivastava, G. W. Greenwood, H. Jones, MEKU 97, 156-158 (2006).
  • [10] X. J. Cao, M. Xiao, M. Jahazi, T. Shariff, MSF 539-543, 1735-1740 (2007).
  • [11] H. Al-Kazzaz, M. Medraj, X. Cao, M. Jahazi, Materials Chemistry and Physics 109, 61-76 (2008).
  • [12] R. Kocurek, J. Adamiec, MSF 782, 408-414 (2014).
  • [13] M. M. Avedesian, H. Baker, A. S. M. Int Mater. Park. OH 15 (1999).
  • [14] K. Bryła, M. Krystian, J. Horky, B. Mingler, K. Mroczka, P. Kurtyka, L. Litynska-Dobrzynska, Materials Science & Engineering A 737, 318-327 (2018)
  • [15] J. W. Cahn, J. Chem. Phys. 66, 3667 (1977).
  • [16] S. Dietrich in C. Domb and J. H. Lebowitz (Ed.), Phase Transitions and Critical Phenomena, London: Academic Press (1988) 1-218.
  • [17] P. G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).
  • [18] D. Jasnov, Rep. Prog. Phys. 47, 1059 (1984).
  • [19] H. Kellay, D. Bonn, J. Meunier, Phys. Rev. Lett. 71, 2607 (1993).
  • [20] J. W. Schmidt, M. R. Moldover, J. Chem. Phys. 79, 379 (1983).
  • [21] E. I. Rabkin, L. S. Shvindlerman, B. B. Straumal, Int. J. Mod. Phys. B. 5, 2989 (1991).
  • [22] B. Straumal, D. Molodov, W. Gust, J. Phase Equilibria. 15, 386 (1994).
  • [23] B. Straumal, W. Gust, D. Molodov, Interface Sci. 3, 127 (1995).
  • [24] B. Straumal, T. Muschik, W. Gust, B. Predel, Acta Metall. Mater. 40, 939 (1992).
  • [25] B. B. Straumal, W. Gust, T. Watanabe, Mater. Sci. Forum 294-296, 411 (1999).
  • [26] B. Straumal, D. Molodov, W. Gust, Mater. Sci. Forum 207-209, 437 (1996).
  • [27] V. G. Glebovsky, B. B. Straumal, V. N. Semenov, V. G. Sursaeva, W. Gust, High Temp. Mater. & Processes 13, 67 (1994).
  • [28] B. Straumal, S. Risser, V. Sursaeva, B. Chenal, W. Gust, J. Physique IV 5,C7 233 (1995).
  • [29] A. B. Straumal, V. A. Yardley, B. B. Straumal, A. O. Rodin, J. Mater. Sci. 50, 4762-4771 (2015).
Uwagi
EN
1. The work was supported by the Russian Science Foundation, project no. 18-72-00243.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f959588f-d471-4642-96c7-6532055d210b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.