PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Cenomanian heterozoan carbonates in the north-central Alborz, north-east Kelardasht, north Iran

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Detailed field surveys, petrographic investigation and SEM and EDS analyses have been used to evaluate Cenomanian glauconitic heterozoan carbonates in north-east Kelardasht, north-central Alborz, north Iran. Lithofacies and microfacies analyses led to recognition of six microfacies types related to the inner-, mid- and outer-ramp facies belts of a carbonate ramp. The heterozoan nature of these carbonates is inferred from a predominance of echinoderms associated with calcispheres, planktonic foraminifers, a lack of ooid grains, and a low carbonate production rate, together with a high content of glauconite grains and prevailing high-Mg calcite mineralogy. Petrographic and SEM studies reveal that glauconite filling skeletal grains retains the shape and morphology of host grains, signifying an authigenic origin at low sedimentation rates and slightly reducing conditions. SEM images show cauliflower and rosette structures associated with well-developed lamellae indicating an authigenic origin of evolved glauconite grains. Our findings are compatible with a nutrient-rich waters and palaeoecological stress related to relative sea-level rise and eutrophic conditions, which contributed to the generation of these heterozoan carbonates despite the hot greenhouse conditions during the Cenomanian in the north-central Alborz Mountains.
Rocznik
Strony
art. no. 37
Opis fizyczny
Bibliogr. 85 poz., fot., rys., tab., wykr.
Twórcy
  • Exploration Directorate of National Iranian Oil Company (NIOCEXP), Khodami Street, NE Sheikh Bahaei Square, PO Box 19395-6669, Tehran, Iran
autor
  • Ministry of Education, Schoolof Professor Hessabi, Sadeghieyeh Square, Tehran, Iran
Bibliografia
  • 1. Abbaspour-Tehrani, A., 2014. Microfacies analysis and depositional environments of the glauconitic limestone at Pol-e-Zoghal and Nargessan outcrop section, NE Kelardasht, N Iran (in Persian with English summary). MSc. Thesis, Shahroud Free University.
  • 2. Adams, T.D., Khalili, M., Khosravi, Said, A., 1967. Stratigraphic significance of some oligosteginid assemblages from Lurestan Province, southwest Iran. Micropaleontology, 3: 55-67.
  • 3. Alavi, M., 1996. Tectonostratigraphic synthesis and structural style of the Alborz mountain system in Iran. Journal of Geodynamics, 21: 1-33.
  • 4. Allen, M.B., Ghassemi, M.R., Shahrabi, M., Qorashi, M., 2003. Accommodation of Late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 24: 659-672.
  • 5. Ando, A., Huber, B.T., MacLeod, K.G., Watkins, D.K., 2015. Early Cenomanian “hot greenhouse” revealed by oxygen isotope record of exceptionally well preserved foraminifera from Tanzania. Paleoceanography, 30: 1556-1572.
  • 6. Baioumy, H., Ahmed Salim, A.M., Ahmed, N., Maisie, M., Al-Kahtany, K., 2021. Upper Cretaceous-Upper Eocene mud-dominated turbidites of the Belaga Formation. Sarawak (Malysia): 20 Ma of paleogeographic, paleoclimate and tectonic stability in Sundaland. Marine and Petroleum Geology, 126: 104897.
  • 7. Baldermann, A., Dietzel, M., Mavromatis, V., Mittermayr, F., Warr, L.N., Wemmer, K., 2017. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: a case study of Upper Cretaceous shallow-water carbonates. Chemistry Geology, 453: 21-34.
  • 8. Banerjee, S., Chattoraj, S.L., Saraswati, P.K., Dasgupta, S., Sarkar, U., 2012a. Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India. Marine and Petroleum Geology, 30: 144-160.
  • 9. Banerjee, S., Bansal, U., Pande, K., Meena, S.S., 2016a. Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: implications for evaluation of stratigraphic condensation. Sedimentary Geology, 331: 12-29.
  • 10. Banerjee, S., Bansal, U., Thorat, A.V., 2016b. A review on palaeogeographic implications and temporal variation in glaucony composition. Journal of Palaeogeography, 5: 43-71.
  • 11. Banerjee, S., Farouk, S., Nagm, E., Choudhury, T.R., Meena, S.S., 2019. High Mg-glauconite in the Campanian Duwi Formation of Abu Tartur Plateau, Egypt and its implications. Journal of African Earth Sciences, 56: 12-25.
  • 12. Bansal, U., Banerjee, S., Pande, K., Ruidas, D.K., 2020. Unusual seawater composition of the Late Cretaceous Tethys imprinted inglauconite of Narmada basin, central India. Geological Magazine,157: 233-247.
  • 13. Barrier, E., Vrieyynck, B., Brouillet, J.-F., Brunet, M.-F., 2018. Paleotectonic reconstruction of the Central Tethyan realm. Darious Programme, Map 9, Cenomanian.
  • 14. Bensong, J., James, N.P., Beauchamp, B., 2008. Carbonate deposition during a time of Mid-latitude Ocean cooling: Early Permian subtropical sedimentation in the Sverdrup Basin, Arctic Canada. Journal of Sedimentary Research, 78: 2-15.
  • 15. Berra, F., Zanchi, A., Mattei, M., Nawab, A., 2007. Late Cretaceous transgression on a Cimmerian high (Neka Valley, Eastern Alborz, Iran): a geodynamic event recorded by glauconitic sands. Sedimentary Geology, 199: 189-204.
  • 16. Bitschene, P.R., Holmes, M.A., Breeza, J., 1992. Composition and origin of Cr-rich glauconitic sediments from the southern Kerguelen Plateau (site 748). Proceedings of the Ocean Drilling Program, Scientific Results, 120: 113-134.
  • 17. Brett, C.E., Moffat, H.A., Taylor, W.L., 1997. Echinoderm taphonomy, taphofacies, and lagerstätten. Paleontological Society Papers, 3: 147-190.
  • 18. Burchette, T.P., Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79: 3-57.
  • 19. Caron, M., Premoli-Silva, I., 2007. New description of the rotaliporid species Brotzeni and globotruncanoides Sigal, 1948 based on re-examination of type material. Rivista Italiana di Paleontologia e Stratigrafia, 113: 525-530.
  • 20. Carson, G.A., Crowley, S., 1993. The glauconite-phosphate association in hardgrounds: examples from the Cenomanian of Devon, southwest England. Cretaceous Research, 14: 69-89.
  • 21. Cartier, E.T., 1971. Die Geologie des unteren Chalus-Tals, Zentral-Alborz, Iran. Mineralogical and Geological Institute ETH. University of Zürich, N.R.
  • 22. Charbonnier, G., Boulila, S., Spangenberg, J.E., Adatte, T., Follmi, K.B., Laskar, J., 2018a. Obliquity pacing of the hydrological cycle during the Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 499: 266-277.
  • 23. Della Porta, G., Kenter, J.A.M., Bahmonde, J.R., Immenhauser, A., Villas, E., 2003. Microbial boundstone dominated carbonate slope (Upper Carboniferous, N Spain). Facies, lithofacies distribution and stratal geometry. Facies, 49: 175-208.
  • 24. Dias-Brito, D., 2000. Global stratigraphy, palaeobiogeography and palaeoecology of Albian-Maastrichtian pithonellid calcispheres: impact on Tethys configuration. Cretaceous Research, 21: 315-349.
  • 25. Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. AAPG Memoir, 1: 108-121.
  • 26. Egan, S.S., Mosar, J., Brunet, M.-F., Kangarli, T., 2009. Subsidence and uplift mechanisms within the South Caspian Basin: insights from the onshore and offshore Azerbaijan region. Geological Society Special Publications, 312: 219-240.
  • 27. Ezoji, N., 2002. Microstratigraphy of the Upper Cretaceous sediments in the northeast Kelardasht (in Persian with English summary). MSc. Thesis, Shahid Beheshti University, Tehran.
  • 28. Flügel, E., 2010. Microfacies of Carbonate Rocks. Springer, Berlin, Heidelberg.
  • 29. Fornos, J.J., Ahr, W.M., 2006. Present-day temperate carbonate sedimentation on the Balearic Platform, western Mediterranean: compositional and textural variation along a low-energy isolated ramp. Geological Society Special Publications, 25: 571-584.
  • 30. Fürsich, F.T., Wilmsen, M., Syed-Emami, K., Cecca, F., Mjidifard, M.R., 2005. The upper Shemshak Formation (Toarcian-Aalenian) of the eastern Alborz (Iran): biota and palaeoenvironments during a transgressive-regressive cycle. Facies, 51: 365-384.
  • 31. Fürsich, F.T., Wilmsen, M., Syed-Emami, K., Majidifard, M.R., 2009a. The Mid-Cimmerian tectonic event (Bajocian) in the Alborz Mountains, Northern Iran: evidence of the break-up unconformity of the South Caspian Basin. Geological Society Special Publications, 312: 189-203.
  • 32. Fürsich, F.T., Wilmsen, M., Seyed-Emami, K., Majidifard, M.R., 2009b. Lithostratigraphy of the Upper Triassic-Middle Jurassic Shemshak Group of northern Iran. Geological Society Special Publications, 312: 129-160.
  • 33. García-Hidalgo, J.F., Barrosso-Barcenilla, F., Gil-Gil, G., Martínez, R., Pons, J.M., Segura, M., 2012. Stratal, sedimentary and faunal relationships in the Coniacian 3rd-order sequence of the Iberian Basin, Spain. Cretaceous Research, 34: 268-283.
  • 34. Guest, B., Guest, A., Axen, G., 2007. Late Tertiary tectonic evolution of northern Iran: a case for simple crustal folding. Global and Planetary Change, 58: 435-453.
  • 35. Hairapetian, V., Wilmsen, M., Ahmadi, A., Shojaei, Z., Berensmeier, M., Majidifard, M.R., 2018. Integrated stratigraphy, facies and correlation of the upper Albian-lower Turonian of the Esfahan area (Iran): unravelling the conundrum of the so-called “Glauconitic Limestone”. Cretaceous Research, 90: 391-411.
  • 36. Hart, M.B., 1991. The Late Cenomanian calcisphere global bioevent. Proceedings of the Ussher Society, 7: 413-417.
  • 37. Huber, B.T., MacLeod, K.G., Watkins, D.K., Coffin, M.F., 2018. The rise and fall of the Cretaceous hot greenhouse climate. Global and Planetary Change, 167: 1-23.
  • 38. Hunter, A.W., Underwood, C.J., 2009. Palaeoenvironmental control on distribution of crinoids in the Bathonian (Middle Jurassic) of England and France. Acta Palaeontologica Polonica, 54: 77-98.
  • 39. Jafarzadeh, M., Choudhury, T.R., Roy, T., Taheri, A., Banerjee, S., Jafarian, A., 2020. Glauconite within Albian-Cenomanian Aitamir Formation, Kopet-Dagh Basin, northeastern Iran: origin and implications of Cretaceous seawater. Arabian Journal of Geosciences, 13: 12-36.
  • 40. James, N.P., 1997. The cool-water carbonate depositional realm. SEPM Special Publication, 56: 1-23.
  • 41. Jasionowski, M., Peryt, D., Peryt, T.M., 2012. Neptunian dykes in the Middle Miocene reefs of western Ukraine: preliminary results. Geological Quarterly, 56 (4): 881-894.
  • 42. Jimenez-Millan, J., Molina, J.M., Nieto, F., Nieto, L., Ruiz-Ortiz, P.A., 1998. Glauconite and phosphate peloids in Mesozoic carbonate sediments (Eastern Subbetic zone, Betic Cordilleras, SE Spain). Clay Mineralogy, 33: 547-559.
  • 43. Kangi, A., Aryaei, A.A., Maassoomi, A., 2010. Synsedimentary deformation in Member 2 of the Mila Formation in the Central Alborz Mountains. Arabian Journal of Geosciences, 3: 33-39.
  • 44. Kavoosi, M.A., 2013. Evidence for volcanic activity in the Upper Permian Nar Member of the Dalan Formation, southeast Iran. In: Permo-Triassic Sequence of the Arabian Plate (ed. M. Poppelrieter): 147-162. EAGE Publications, Houten, the Netherlands.
  • 45. Kavoosi, M.A., Ezoji, N., 2018. Facies, depositional environments, and sequence stratigraphy analysis of the upper Barremian-lower Aptian carbonates in the northeast Kelardasht, N Iran. Journal of African Earth Sciences, 147: 228-242.
  • 46. Kennedy, W.J., Chahida, M.R., Djafarian, M.A., 1979. Cenomanian cephalopods from the glauconitic limestone southeast of Esfahan, Iran. Acta Palaeontologica Polonica, 24: 3-50.
  • 47. Knöerich, A.C., 2005. Investigations on the importance of early diagenetic processes for the mineralogical stabilization and lithification of heterozoan carbonate assemblages (Oligo-Miocene, Maltese Islands and Sicily). PhD Thesis, Institut für Geowissenchaften, Universität Potsdam.
  • 48. Krajewski, M., Ferre, B., Salamon, M.A., 2020. Cyrtocrinids (Cyrtocrinida, Crinoidea) and other associated crinoids from the Jurassic (Kimmeridgian-Tithonian)-Cretaceous (Berriasian-Barremian) of the Carpathian Foredeep basement (western Ukraine). Geobios, 60: 61-77.
  • 49. Lukasik, J., James, N.P., 2006. Carbonate sedimentation, climate change and stratigraphic completeness on a Miocene cool-water epeiric ramp, Murray Basin, South Australia. Geological Society Special Publications, 255: 217-244.
  • 50. Mattei, M., Cifelli, F., Alimohammohadzadian, H., Rashid, H., Winkler, A., Sagnotti, L., 2017. Oroclinal bending in the Alborz Mountains (Northern Iran): new constraints on the age of South Caspian subduction and extrusion tectonics. Gondwana Research, 42: 13-28.
  • 51. McConchie, D.M., Lewis, D.W., 1980. Varieties of glauconite in Late Cretaceous and Early Tertiary rocks of the South Island of New Zealand, and new proposals for classification. New Zealand Journal of Geology and Geophysics, 23: 413-437.
  • 52. Merino-Tomé, Ó., Della Porta, G., Kenter, J.A.M., Verwers, K., Harris, P., Adams, E.W., Playton, T., Corrochano, D., 2012. Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): influence of tectonics, eustacy and carbonate production. Sedimentology, 59: 118-155.
  • 53. Moosavizadeh, M.A., Mahboubi, A., Moussavi-Harami, R., Kavoosi, M.A., Schlagintweit, F., 2015. Sequence stratigraphy and platform to basin margin facies transition of the Lower Cretaceous Dariyan Formation (northeastern Arabian Plate, Zagros fold-thrust belt, Iran). Bulletin of Geosciences, 91: 145-172.
  • 54. Nebelsick, J., 1995. Uses and limitations of actuopalaeontological investigations on echinoids. Geobios, 18: 329-336.
  • 55. Nebelsick, J., 1996. Biodiversity of shallow-water Red Sea echinoids: implications for the fossil record. Journal of the Marine Biological Association, 76: 185-194.
  • 56. Nelson, C.S., Hume, M.H., 1987. Paleoenvironmental controls on mineral assemblages in a shelf sequence: Te Kuiti Group, South Auckland, New Zealand. New Zealand Journal of Geology and Geophysics, 30: 343-362.
  • 57. Nichols, G., 2009. Sedimentology and Stratigraphy. Second edition. John Wiley and Sons.
  • 58. Odin, G.S., Matter, A., 1981. De glauconiarum origine. Sedimentology, 28: 611-641.
  • 59. Odin, G.S., Fullagar, P.D., 1988. Geological significance of the glaucony facies. Developments in Sedimentology, 45: 295-332.
  • 60. Olchowy, P., Krajewski, M., 2020. Lower Kimmeridgian facies and sedimentary succession of a shallow-water coated-grain-dominated carbonate ramp of the northern peri-Tethyan shelf: an example from the Radomsko Folds (central Poland). Geological Quarterly, 64 (4): 969-987.
  • 61. Omaña, L., Torres, J.R., Doncel, R.L., Alencáster, G., Caballero, I.L., 2014. A pithonellid bloom in the Cenomanian-Turonian boundary interval from Cerritos in the western Valles-San Luis Potosí platform, Mexico: paleoenvironmental significance. Revista Mexicana de Ciencias Geologicas, 31: 28-44.
  • 62. Percival, L.M.E., Jenkyns, H.C., Matter, T.A., Dickson, A.J., Batenburg, S.J., Ruhl, M., Hesselbo, S.P., Barclay, R., Jarvis, I., Robinson, S., Woelders, L., 2018. Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of oceanic anoxic event 2 and the end-Cretaceous to other Mesozoic events. American Journal of Science, 318: 799-860.
  • 63. Peryt, D., Peryt, T.M., Halas, S., Raczyński, P., 2016. Microfacies, foraminifers and carbon and isotopes in a basinal section of the Zechstein Limestone (Wuchiapingian): Bonikowo 2 borehole, western Poland. Geological Quarterly, 60 (4): 827-839.
  • 64. Petrizzo, M.R., Caron, M., Premoli-Silva, I., 2015. Remarks on the identification of the Albian/Cenomanian boundary and taxonomic clarification of the planktonic foraminifera index species globotruncanoides, brotzeni and tehamaensis. Geological Magazine, 152: 521-536.
  • 65. Pomar, L., Gill, E., Obrador, A., Ward, W.C., 2005. Facies architecture and high-resolution sequence stratigraphy of an upper Cretaceous platform margin succession. Southern Central Pyrenees, Spain. Sedimentary Geology, 175: 339-365.
  • 66. Purser, B.H., 1973. The Persian Gulf Holocene. Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. Springer, Heidelberg.
  • 67. Richter, D.K., 1983. Calcareous ooids: a synopsis. In: Coated Grains (ed. T.M. Peryt): 71-99. Springer, Berlin, Heidelberg.
  • 68. Rikhtegarzadeh, M., Vaziri, S.H., Aleali, M., Amiri Bakhtiar, H., Jahani, D., 2016. Microbiostratigraphy, microfacies and depositional environment of the Sarvak Formation in Bibi Hakimeh Oil Field (well no. 29), southwest Iran. International Journal of Geographyand Geology, 5: 194-208.
  • 69. Robert, A.M.M., Letouzey, J., Kavoosi, M.A., Sharham, Sh., Jaume Vergés, Aghababai, A., 2014. Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Marine and Petroleum Geology, 57: 68-87.
  • 70. Rudmin, M., Banerjee, M., Mazurov, A., 2017. Compositional variation of glauconites in Upper Cretaceous-Paleogene sedimentary iron-ore deposits in south-eastern western Siberia. Sedimentary Geology, 355: 20-30.
  • 71. Salah, A.H., 2017. Oligosteginid assemblages of basinal limestone succession in Ismaelawa section, Kurdistan region, north Iraq. Diyala Journal for Pure Sciences, 13: 183-196.
  • 72. Salvador, A., 1994. International stratigraphic guide. A guide to stratigraphic classification, terminology, and procedure (second edition). Co-published by the International Union of Geological Sciences and the Geological Society of America.
  • 73. Shahidi, A., Barrier, E., Brunet, M.-F., Saidi, A., 2011. Tectonic evolution of the Alborz in Mesozoic and Cenozoic (in Persian with English summary). Scientific QuarterlyJournal, Geoscience, 21: 201-212.
  • 74. Smith, A.B., Monks, N.E.A., Gale, A.S., 2006. Echinoid distribution and sequence stratigraphy in the Cenomanian (Upper Cretaceous) of southern England. Proceedings of the Geologists' Association, 117: 207-217.
  • 75. Taheri, J., Fürsich, F.T., Wilmsen, M., 2009. Stratigraphy, depositional environments and geodynamic significance of the Upper Bajocian Bathonian Kashafrud Formation, NE Iran. Geological Society Special Publications, 312: 205-218.
  • 76. Tucker, M.E., Wright, V.P., 1990. Carbonate Sedimentology. Blackwell Scientific Publication.
  • 77. Vahdati Daneshmand, F., Karimkhani, A., Karimi, H.R., 2001. The Geological Map of Chalus (in the scale of 1:100 000). The Geological Survey of Iran, Tehran.
  • 78. Wendler, J., Gräfe, K.-U., Willems, H., 2002. Palaeoecology of calcareous dinoflagellate cysts in the mid-Cenomanian boreal realm: implications for the reconstruction of palaeoceanography of the NW European shelf sea. Cretaceous Research, 23: 213-229.
  • 79. Westphal, H., Halfar, J., Freiward, A., 2010. Heterozoan carbonates in subtropical to tropical settings in the present and past. International Journal of Earth Science, 99: 153-169.
  • 80. Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., Majidifard, M.R., Taheri, J., 2009. The Cimmerian orogeny in northern Iran: tectono-stratigraphic (evidence from the foreland. Terra Nova, 21: 211-218.
  • 81. Wilson, J.L., 1997. Carbonate depositional environments and diagenesis. Geophysical Developments Series, 6: 9-29.
  • 82. Yassaghi, A., Naeimi, A., 2010. Structural analysis of the Gachsar sub-zone in central Alborz range: constrain for inversion tectonics followed by the range transverse faulting. International Journal of Earth Science, 99: 1237-1249.
  • 83. Yilmaz, I.O., Cook, T.D., Hosgor, I., Wagreich, M., Rebman, K., Murray, A.M., 2018. The upper Coniacian to upper Santonian drowned Arabian carbonate platform, the Mardin-Mazidag area, SE Turkey. Sedimentological, stratigraphic, and ichthyofaunal records. Cretaceous Research, 84: 153-167.
  • 84. Zanchi, A., Zanchetta, S., Berra, F., Mattei, M., Garzanti, E., Molyneux, S., Navab, A., Sabouri, J., 2009. The Eo-Cimmerian (Late? Triassic) orogeny in North Iran. Geological Society Special Publications, 312: 31-35.
  • 85. Zeller, M., Verwer, K., Eberli, G.P., Massaferro, J.L., Schwarz, E., Spalletti, L., 2015. Depositional controls on mixed carbonate-siliciclastic cycles and sequences on gently inclined shelf profiles. Sedimentology, 62: 2009-2037.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Identyfikator YADDA
bwmeta1.element.baztech-f957cf1e-595f-44bb-a077-168faa283ea5