PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Sequential FEM-SPH Model of the Heating-Remelting-Cooling of Steel Samples in the Gleeble 3800 Thermo-Mechanical Simulator System

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a sequential model of the heating-remelting-cooling of steel samples based on the finite element method (FEM) and the smoothed particle hydrodynamics (SPH). The numerical implementation of the developed solution was completed as part of the original DEFFEM 3D package, being developed for over ten years, and is a dedicated tool to aid physical simulations performed with modern Gleeble thermo-mechanical simulators. Using the developed DEFFEM 3D software to aid physical simulations allows the number of costly tests to be minimized, and additional process information to be obtained, e.g. achieved local cooling rates at any point in the sample tested volume, or characteristics of temperature changes. The study was complemented by examples of simulation and experimental test results, indicating that the adopted model assumptions were correct. The developed solution is the basis for the development of DEFFEM 3D software aimed at developing a comprehensive numerical model allows the simulation of deformation of steel in semi solid state.
Rocznik
Strony
60--68
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • AGH - University of Science and Technology, Department of Applied Computer Science and Modeling, Krakow, Poland
Bibliografia
  • [1] ANSYS, Inc. (2020). Ansys software. Retrieved December 12, 2019, from http://www.ansys.com.
  • [2] Hojny, M. (2014). Designing dedicated systems for simulating steel deformation in a semi-liquid state. Kraków: Wzorek. (in Polish).
  • [3] Monaghan, J.J. (1992). Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics. 30, 543-574.
  • [4] Monaghan, J.J. (2005). Smoothed particle hydrodynamics. Reports on Progress in Physics. 68, 1703-1759. DOI:10.1088/0034-4885/68/8/R01
  • [5] Zhang, L., Shen, H., Rong, Y. & Huang, T. (2007). Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering A. 466, 71-78.
  • [6] Su, X., Sasaki, D. & Nakahashi, K. (2013). Cartesian mesh with a novel hybrid WENO/meshless method for turbulent flow calculations. Computers & Fluids. 84, 69-86.
  • [7] Tong, M. & Browne, D.J. (2014). An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermo capillary flow. International Journal of Heat and Mass Transfer. 73, 284-292.
  • [8] Gingold, R.A. & Monaghan, J.J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of The Royal Astronomical Society.181, 375-389.
  • [9] Buruchenko, S.K., Schafer, C.M. & Maindl, T.I. (2017). Smooth particle hydrodynamics GPU acceleration tool for asteroid fragmentation simulation. Procedia Engineering. 204, 59-66.
  • [10] Longshaw, S. & Rogers, B.D. (2015). Automotive fuel cell sloshing under temporally and spatially varying high acceleration using GPU-based Smoothed Particle Hydrodynamics (SPH). Advances in Engineering Software. 83, 31-44.
  • [11] Cleary, P.W., Ha, J., Prakash, M. & Nguyen, T. (2006). 3D SPH flow predictions and validation for high pressure die casting of automotive component. Applied Mathematical Modelling. 30(11), 1406-1427.
  • [12] Pineau, F. & D’Amours, G. (2011). Application of LS-DYNA SPH formulation to model semi-solid metal casting. In 8th European LS-DYNA Users Conference, May 2011. Strasbourg, France: Dynamore.
  • [13] Jianga, F., Oliveiraa, M. & Sousaa, A. (2007). Mesoscale SPH modeling of fluid flow in isotropic porous media. Computer Physics Communications. 176(7), 471-480.
  • [14] Zhu, Y.I. & Fox, P.J. (2001). Smoothed particle hydrodynamics model for diffusion through porous media. Transport in Porous Media. 43, 441-471.
  • [15] Bui, H., Kodikara, J., Pathegama, R., Bouazza, A. & Haque, A. (2013). Large deformation and post-failure simulations of segmental retaining walls using mesh-free method (SPH). In the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2-6 September 2013 (pp.687-690). Paris, France.
  • [16] Limido. J., Espinosa, C., Salaun, M., Mabru, C., Chieragatti, R. & Lacome, L. (2011). Metal cutting modelling SPH approach. International Journal of Machining and Machinability of Materials. 9(3/4), 177-196.
  • [17] Bohdal, Ł. (2016). Application of a sph coupled fem method for simulation of trimming of aluminium auto body sheet. Acta Mechanica et Automatica. 10(1), 56-61.
  • [18] Monaghan, J.J., Huppert, H.E. & Worster M.G. (2005). Solidification using smoothed particle hydrodynamics. Journal of Computational Physics. 206(2), 684-705.
  • [19] Farrokhpanah, A., Bussmann, M. & Mostaghimi, J. (2018). New smoothed particle hydrodynamics (SPH) formulation for modeling heat conduction with solidification and melting. Numerical Heat Transfer, Part B: Fundamentals. 71(4), 299-312.
  • [20] Cleary, P.W., Ha, J., Prakash, M. & Nguyen, T. (2010). , Short shots and industrial case studies: Understanding fluid flow and solidification in high pressure die casting. Applied Mathematical Modelling. 34, 2018-2033.
  • [21] Faqih, R.A. & Naa, C.F. (2013). Three-dimensional smoothed particle hydrodynamics simulation for liquid metal solidification process. In International Symposium on Computational Science, 2013.
  • [22] Hojny, M. (2018). Modeling of Steel Deformation in the Semi-Solid State. (2nd ed.). Switzerland: Springer Publ.
  • [23] Hojny, M., Głowacki, M., Bała, P., Bednarczyk, W. & Zalecki, W. (2019). multiscale model of heating-remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system. Archives of Metallurgy and Materials. 64(1), 401-412.
  • [24] Morris, J.P. & Monaghan, J.J. (1997). A switch to reduce SPH viscosity. Journal of Computational Physics. 136(1), 41-50.
  • [25] Monaghan. J.J. (1994). Simulating free surface flows with SPH. Journal of Computational Physics.110(2), 399-406.
  • [26] Cleary, P.W. (1998). Modeling confined multi-material heat and mass flows using SPH. Applied Mathematical Modelling. 148(1), 227-264.
  • [27] Cleary, P.W. & Monaghan, J. (1999). Conduction modelling using smoothed particle hydrodynamics. Journal of Computational Physics. 148(1), 227-264.
  • [28] Crespo, A.J.C., Gesteira M.G. & Dalrymple, A. (2007). Boundary conditions generated by dynamic particles in SPH methods. Computers, Materials and Continua. 5(3), 173-184.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9555807-88e0-4f0c-9b58-2b60cb36f511
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.