Roman SZAFRAN¹, Tadeusz TOMCZAK²

e-mail: roman.szafran@pwr.wroc.pl

¹ Zakład Inżynierii Chemicznej, Wydział Chemiczny, Politechnika Wrocławska

² Zakład Architektury Komputerów, Instytut Informatyki, Automatyki i Robotyki, Wydział Elektroniki, Politechnika Wrocławska, Wrocław

Wykorzystanie metody *lattice-Boltzmann* do symulacji mikroprzepływów w kanałach układów *lab on a chip*

Wstęp

Przepływy w mikrokanałach układów *lab on a chip* (LOC) mogą być spontaniczne, w wyniku oddziaływań powierzchniowych, sił *Coulomba* lub wywołane gradientem ciśnienia. Stosunek powierzchni do objętości wzrasta dziesięciokrotnie z dziesięciokrotną redukcją wymiaru geometrycznego systemu, co jest kluczowym efektem, koniecznym do uwzględnienia przy projektowaniu mikroaparatów. Efekty powierzchniowe, jak również struktura powierzchni kanału wywierają dominujący wpływ na charakterystykę przepływu płynu w mikrokanałach.

Przepływy laminarne cieczy newtonowskich w prostoliniowych kanałach o gładkich ścianach i średnicy w zakresie $1\div1000 \,\mu\text{m}$ spełniają warunek ciągłości, jako że wymiar charakterystyczny w tym przypadku jest kilka rzędów większy niż średnia droga swobodna cząsteczki – Kn < 0,001, a co za tym idzie w sposób prawidłowy są opisywane przez równanie *Naviera-Stokesa*.

Dla przepływu gazów założenie ciągłości strugi nie zawsze jest spełnione dla mikroprzepływów, zwłaszcza w przypadku przepływów przejściowych i molekularnych. Wówczas równanie *Boltzmanna* lepiej opisuje przepływ, co oznacza iż modele bazujące na metodzie *lattice-Boltzmann* (LBM) mogą być stosowane z sukcesem w szerszym zakresie przypadków niż modele CFD – od przepływów ciągłych po przepływy molekularne. W mikrosystemach często występują siły objętościowe oddziaływujące na elementy płynu, takie jak siły elektrostatyczne wywołane rozkładem gęstości pola elektrycznego. W przypadku mikroprzepływów siła grawitacji, ważna z punktu widzenia układów makroskopowych, często może być pominięta. Ponadto w mikrosystemach często przepływają płyny nienewtonowskie i zawiesiny koloidalne polisacharydów, lipoprotein, czy też płyny komórkowe.

Mikroprzepływy zatem w istotny sposób różnią się opisem od makroprzepływów, gdyż istnieje konieczność uwzględnienia subtelnych oddziaływań oraz dyskretnej natury płynu, co w przypadku makroprzepływów zazwyczaj pomija się z racji skali układu.

Celem pracy było doświadczalne zbadanie przepływu płynu w sieci mikrokanałów, których struktura była odzwierciedleniem mikrostruktury naczyń włosowatych guza nowotworowego. W szczególności, wyznaczono prędkości przepływu płynu komórkowego (zawiesina drożdży) w poszczególnych fragmentach sieci kanałów i porównano z wynikami symulacji komputerowych metodą LBM.

Metoda lattice-Boltzmann

Metoda *lattice-Boltzmann* jest techniką numeryczną umożliwiającą rozwiązanie równania *Naviera-Stokesa* (NS) dla przepływów nieściśliwych lub quasi ściśliwych, gdy efekt lepkości objętościowej jest zaniedbywany (wartość liczby *Macha* poniżej 1). Jest ona ściśle związana z kinetyczną teorią gazu sieciowego, dla którego zostało wyprowadzone równanie *Boltzmanna*:

gdzie:

$$\vec{u} \cdot \nabla_x f + \frac{\vec{F}}{n} \cdot \nabla_u f + \frac{\partial f}{\partial t} = \Omega \tag{1}$$

$$\Omega \equiv \Gamma^{(+)} - \Gamma^{(-)} = \int (f_{12} - f_{2}) g\sigma(g, \Omega) d\Omega d\vec{u}_2 m_2$$
(2)

$$\Omega = \omega(f^{eq} - f) = \frac{1}{\tau}(f^{eq} - f)$$
(3)

- Ω operator kolizji opisany równ. (3) w przypadku aproksymacji *Bhatanagar-Gross-Krook*;
- f, f^{eq} funkcje rozkładu prawdopodobieństwa wystąpienia prędkości u dla pojedynczej cząstki, odpowiednio w chwili t i w stanie równowagi;

 τ , ω – parametry relaksacji modelu,

F – siła działająca na cząstkę,

m – masa cząstki.

LBM stanowi odrębny model kinetyczny równania NS i można go sklasyfikować jako jawną, lagrangeowską aproksymację hiperboliczną równania NS o następujących właściwościach: w pełni lokalną, drugiego rzędu dla czasu i przestrzeni, bezwarunkowo liniowo stabilną, wysoce wydajną dla obliczeń równoległych, zdolną do prawidłowego odwzorowania nieregularnych warunków brzegowych oraz efektów mikroskali.

Metoda ta z powodzeniem została wykorzystana do symulacji szeregu procesów w inżynierii chemicznej: przepływów jedno i wielofazowych oraz przepływów w ciałach porowatych, mieszanin wieloskładnikowych z reakcją chemiczną oraz międzyfazową wymianą ciepła i masy, przemianą fazową oraz śledzeniem powierzchni międzyfazowej, w tym przepływów burzliwych, jak również przepływów w układach LOC [*Zhang, 2011*].

Badania doświadczalne

W celu weryfikacji wyników symulacji komputerowych, na wstępie przeprowadzono badania doświadczalne przepływu płynu komórkowego w mikrokanałach. Układ LOC został zaprojektowany i zbudowany w ramach badań laboratoryjnych.

Budowa układu została opisana w pracach [*Szafran, 2013a,b*]. Układ pomiarowy składał się z mikrochipa zaopatrzonego w porty przyłączeniowe dla kapilar doprowadzających i odprowadzających płyn z układu, pompy strzykawkowej *Medima S1* oraz stereoskopowego mikroskopu optycznego *Motic K-400L* zaopatrzonego w kamerę *Moticam* 2300. Przed przystąpieniem do badań układ przemywano wodnym roztworem izopropanolu (9:1 izopropanol/woda) w celu zwilżenia układu i usunięcia pęcherzy powietrza. Następnie układ przepłukiwano wodą destylowaną.

Materiały. Do badań wykorzystywano powszechnie dostępne, liofilizowane drożdże spożywcze (*Saccharomyces cerevisiae*). W badaniach stosowano zawiesinę o stężeniu 2 g/dm³.

Metodyka. Zawiesina o niskiej koncentracji komórek umożliwiała prowadzenie obserwacji mikroskopowych przepływu płynu, przyczyn komórki były traktowane jako elementy wskaźnikowe, a dzięki analizie ich przesunięć na kolejnych klatkach filmu, możliwe było wyznaczenie rozkładu wartości wektorów prędkości płynu w poszczególnych kanałach, a w konsekwencji w całym systemie LOC. Na rys. 1 przedstawio-

Rys. 1. Struktura mikrokanałów. Cyframi arabskimi i rzymskimi oznaczono przekroje kanałów w których wyznaczano prędkości przepływu płynu

no rozmieszczenie punktów dla których analizowane były prędkości płynu w strukturze kanałów.

Zawiesinę drożdży przetłaczano ze stałym natężeniem przepływu $0,2 \text{ cm}^3/h$ (0,05 µl/s) za pomocą pompy strzykawkowej, do której podłączona była kapilara prowadząca do mikrosystemu LOC.

Kamerą mikroskopową rejestrowano przepływy komórek drożdży w poszczególnych kanałach. Sekwencje video dzielono na pojedyncze klatki na których śledzono ruch komórek w mikrokanałach. Na podstawie znanej liczby klatek na sekundę oraz wcześniej wyznaczonej liczby klatek potrzebnych do przebycia odcinka kanału, obliczano czas potrzebny na jego przebycie przez poszczególne komórki. Znając czas i przebytą drogę określano prędkość przepływu komórek w poszczególnych kanałach. Dla każdego kanału pomiar powtarzano pięciokrotnie dla pięciu różnych komórek znacznikowych.

Wyniki badań doświadczalnych

Na rys. 2 przedstawiono zdjęcie mikroskopowe punktu pomiarowego 3 wraz z przepływającą zawiesiną komórek drożdży.

Rys. 2. Zdjęcie punktu pomiarowego 3 z widocznymi znacznikowymi komórkami drożdży

W tab. 1 zebrano wyniki badań – średnie wartości prędkości przepływu płynu w poszczególnych kanałach mikrostruktury.

Tab.	1.	Wyniki	badań	doświadczalnych	-	wyznaczone	prędkości	przepływu	płynu
w poszczególnych kanałach układu LOC									

Nr punktu pomiarowego	Nr kanału	Średnia prędkość [mm/s]	Nr punktu pomiarowego	Średnia prędkość [mm/s]		
	1	0,470		0,271		
1	2	0,100	Ι			
	3	0,080				
	1	0,351		0,381		
2	2	0,104	II			
	3	0,239				
	1	0,168		0,197		
3	2	0,121	III			
	3	0,106				
4	1	0,767	IV	0,332		
4	2	0,718	ĨV			
	1	1,660		0,567		
5	2	0,468	V			
	3	0,206				
	1	0,204		0,595		
6	2	0,081	N/I			
0	3	0,259	VI			
	4	0,130				
			VII	0,330		
			VII	0,214		

Wyniki symulacji komputerowych LBM

Symulacje komputerowe hydrodynamiki przepływu w mikrokanałach przeprowadzono z wykorzystaniem modelu 2DQ9 dla geometrii identycznej z przedstawioną na rys. 1.

Struktura mikrokanałów zaprojektowana w programie CAD została wyeksportowana w postaci rastrowego pliku graficznego png o zadanej rozdzielczości, a następnie wczytywana do *solvera LBM MicroFlow 0.2* [*LAB-CHIP BIOMEMS, 2011*]. Oprogramowanie zostało opracowane w ramach badań jako dedykowane narzędzie do symulacji przepływów płynu w sieci mikrokanałów. Aktualna wersja bazuje na bibliotece C++ *Palabos v1.3*.

Symulacje przeprowadzono dla następujących warunków brzegowych: na włocie do każdego z kanałów (lewa krawędź struktury) zakładano stałą prędkość (warunek *Dirichleta*); na wylocie z każdego kanału (krawędzie górna, dolna i prawa) zakładano zerowy gradient prędkości *outflow* (warunek *Neumanna*); na ścianach kanałów warunek *bounceback* (odpowiednik warunku braku poślizgu płynu); przyjmowano zerową początkową prędkość płynu w kanale. Parametry symulacji zebrano w tab. 2.

Tab. 2. I	Parametry	symulacji	komputerov	vych LBM
-----------	-----------	-----------	------------	----------

Prędkość płynu na włocie do kanału [lattice units]	0,0125		
Liczba Reynoldsa charakterystyczna dla geometrii kanału	0,56		
Szerokość kanału – wymiar charakterystyczny [µm]	35		
Lepkość kinematyczna [lattice units]	0,357143		
Czas relaksacji τ [lattice units]	1,57143		
Bezwymiarowa gęstość płynu	1		
Współczynnik relaksacji w [lattice units]	0,636364		

Na rys. 3 przedstawiono wyniki symulacji – przykładowy profil prędkości płynu w kanale, w punkcie nr VI.

Kształt otrzymanych profili prędkości płynu odbiega od profilu parabalicznego w różnym stopniu, w zależności od położenia analizowanego przekroju. Należv jednak pamiętać, iż w pełni paraboliczny profil prędkości płynu uzyskuje się dla przepływów ustalonych w kanałach prostoliniowych o nieskończonej długości przy

Rys. 3. Profil prędkości płynu w kanale, przekrój nr VI

niowy

zaniedbaniu efektów wlotowych. W przypadku sieci kanałów o złożonej strukturze, w efekcie rozwidlania i łączenia kanałów, w których płyn przepływa z różną prędkością, obserwuje się znaczne odstępstwa od zależności teoretycznych o nieustalonym w czasie charakterze. W tab. 2 przedstawiono wyniki symulacji – średnie prędkości płynu w przekrojach I – VIII oznaczonych na rys. 1.

Tab. 2. Wyniki symulacji: średnie prędkości płynu w kanałach, w przekrojach I-VIII

Nr przekroju	Ι	II	III	IV	V	VI	VII	VIII
Prędkość płynu [mm/s]	0,48	0,63	0,53	0,57	0,60	0,50	0,55	0,53

Wnioski

W pracy przedstawiono wyniki badań doświadczalnych oraz symulacji komputerowych przepływu płynu komórkowego w mikrokanałach układu LOC, którego struktura odpowiadała strukturze naczyń włosowatych guza nowotworowego.

Wyniki symulacji wskazują na znaczne odstępstwa od parabolicznego profilu prędkości płynu w kanałach.

Zastosowanie geometrii dwuwymiarowej prowadziło do ponad dwudziestokrotnego skrócenia czasu obliczeń (do 2 dni), jednak w istotny sposób wpłynęło na błędy obliczeń, z uwagi na zaniedbanie oddziaływania górnej i dolnej powierzchni kanału na przepływający płyn. Różnice między wartościami doświadczalnymi i wynikami symulacji wahały się w granicach od 15 do ponad 100%.

Dalsze badania będą zmierzały do zastosowania kart obliczeniowych w celu skrócenia obliczeń dla modeli 3D.

LITERATURA

LAB-CHIP BIOMEMS, 2011. (05.2013) http://www.labchip.pwr.wroc.pl

- Szafran R., 2013a. Fabrykacja mikroaparatów metodą bezpośredniego grawerowania laserowego DLP. *Inż. Ap. Chem.*, **52**, nr 5, 475-476
- Szafran R., 2013b. Metodyka projektowania mikroaparatów lab-on-a-chip do badania przepływów w naczyniach włosowatych guzów nowotworowych. Inż. Ap. Chem., 52, nr 5, 477-478
- Zhang J., 2011. Lattice Boltzmann method for microfluidics: models and applications. *Microfluid. Nanofluid.*, 10, 1–28, DOI: 10.1007/s10404-010-0624-1

Badania były finansowane w ramach grantu badawczego NCN nr N N501 042140.