PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Designing a monolithic tip-tilt-piston flexure manipulator

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the design of a monolithic tip-tilt-piston flexure manipulator for high-precision applications. The manipulator is first proposed with consideration of actuation isolation, which is a symmetrical and compact design and can be monolithically fabricated without using additive manufacturing. Kinematic and kinetostatic models are then analytically derived for quick parameter assessments. A case study is discussed finally, where a monolithic prototype has been made using CNC milling machining, comparisons among analytical, FEA and testing results are also undertaken.
Rocznik
Strony
871--879
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab., wykr.
Twórcy
autor
  • School of Engineering, University College Cork, Cork, Ireland
autor
  • School of Engineering, University College Cork, Cork, Ireland
Bibliografia
  • [1] S.L. Canfield, Development of the carpal wrist: a symmetric, parallel-architecture robotic wrist, (PhD thesis), Virginia Polytechnic Institute and State University, 1997.
  • [2] X.J. Liu, I.A. Bonev, Orientation capability, error analysis, and dimensional optimization of two articulated tool heads with parallel kinematics, ASME Journal of Manufacturing Science and Engineering 130 (1) (2008) 9, 011015.
  • [3] E. Pernette, S. Henein, I. Magnani, R. Clavel, Design of parallel robots in microrobotics, Robotica 15 (4) (1997) 417–420.
  • [4] T. Huang, M. Li, X.M. Zhao, J.P. Mei, D.G. Chetwynd, S.J. Hu, Conceptual design and dimensional synthesis for a 3-DOF module of the TriVariant – a novel 5-DOF reconfigurable hybrid robot, IEEE Transactions on Robotics 21 (3) (2005) 449– 456.
  • [5] B. Siciliano, The Tricept robot: inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm, Robotica 17 (4) (1999) 437–445.
  • [6] S. Awtar, G. Parmar, Design of a large range XY nanopositioning system, ASME Journal of Mechanisms and Robotics 5 (2) (2013) 10, 021008.
  • [7] J.B. Hopkins, R.M. Panas, Flexure design for a high-speed large-range tip-tilt-piston micro-mirror array, in: Proceedings of SPE 29th Annual Meeting, Boston, MA, November, 2014.
  • [8] L.L. Howell, Compliant Mechanisms, John Wiley & Sons, New York, 2001.
  • [9] S. Awtar, Synthesis and analysis of parallel kinematic XY flexure mechanisms, (Doctoral dissertation), Massachusetts Institute of Technology, 2003.
  • [10] G. Hao, R.B. Hand, Design and static testing of a compact distributed-compliance gripper based on flexure motion, Archives of Civil and Mechanical Engineering 16 (4) (2016) 708–716.
  • [11] G. Hao, Towards the design of monolithic decoupled XYZ compliant parallel mechanisms for multi-function applications, Mechanical Sciences 4 (2013) 291–302.
  • [12] W. Dong, L.N. Sun, Z.J. Du, Design of a precision compliant parallel positioner driven by dual piezoelectric actuators, Sensors and Actuators A: Physical 135 (1) (2007) 250–256.
  • [13] H.-H. Pham, H.C. Yeh, I.-M. Chen, Micromanipulation system design based on selective actuation mechanisms, The International Journal of Robotics Research 25 (2) (2006) 171– 185.
  • [14] L.C. Hale, Principles and techniques for designing precision machines, (Doctoral dissertation), Massachusetts Institute of Technology, 1999.
  • [15] J.B. Hopkins, M.L. Culpepper, Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT) – Part I: principles, Precision Engineering 34 (2) (2010) 259–270.
  • [16] J. Yu, S. Li, H.J. Su, M.L. Culpepper, Screw theory based methodology for the deterministic type synthesis of flexure mechanisms, ASME Journal of Mechanisms and Robotics 3 (3) (2011) 14, 031008.
  • [17] S. Awtar, A.H. Slocum, Constraint-based design of parallel kinematic XY flexure mechanisms, ASME Journal of Mechanical Design 129 (8) (2007) 816–830.
  • [18] H. Li, G. Hao, A constraint and position identification (CPI) approach for the synthesis of decoupled spatial translational compliant parallel manipulators, Mechanism and Machine Theory 90 (2015) 59–83.
  • [19] G. Hao, X. Kong, A structure design method for compliant parallel manipulators with actuation isolation, Mechanical Sciences 7 (2016) 247–253.
  • [20] G. Hao, H. Li, Nonlinear analytical modeling and characteristic analysis of a class of compound multibeam parallelogram mechanisms, ASME Journal of Mechanisms and Robotics 7 (4) (2015) 9, 041016.
  • [21] G. Chen, X. Liu, Y. Du, Elliptical-arc-fillet flexure hinges: toward a generalized model for commonly used flexure hinges, Journal of Mechanical Design 133 (8) (2011) 9, 081002.
  • [22] G. Hao, X. Kong, R.L. Reuben, A nonlinear analysis of spatial compliant parallel modules: multi-beam modules, Mechanism and Machine Theory 46 (5) (2011) 680–706.
  • [23] G. Hao, Determinate synthesis of symmetrical, monolithic tip-tilt-piston flexure stages, Journal of Mechanical Design (ASME Transactions) 139 (4) (2017) 9, 042303.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9532efe-9e53-4382-9a4f-1d286d8f1926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.