PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The proposal of adaptating the existing comparative base of GLM AGH as moving test base to determine the accuracy of laser telemeters in scanning instruments

Identyfikatory
Warianty tytułu
PL
Propozycja adaptacji istniejącej bazy komparacyjnej GML AGH jako ruchomej bazy testowej dla potrzeb wyznaczania dokładności dalmierzy laserowych instrumentów skanujących
Języki publikacji
EN
Abstrakty
EN
Determination of the accuracy characteristics of geodetic instruments is – according to the law – the duty of geodetic services doing all the surveying. The certifi cates are given by the authorized units equipped in special comparative bases. The specifi cs of modern scanning instruments require much research to get full information about real accuracy of instrument. Wide application of refl ectorless measurements in the inventory and monitoring of the natural and anthropogenic objects requires the recognition of accuracy parameters of the defi nite instrument. This refers both to positioning the head based on reference points, but also the components of the situation error of the point in the cloud. An important component included in the situation error of the point the error of the distance measurement in the option of full automation. Automatism and short time of the measurement of the set of point requires specifi c approach to the way of determining the characteristic of telemeter. One can use the existing bases for this purpose. In article the algorithm of the use of existing comparative base of the Geodetic Metrological Laboratory of AGH for the needs of testing refl ectorless telemeters of scanning total stations of laser scanners within the range of the present length of the base in the online mode.
PL
Wyznaczanie charakterystyk dokładnościowych instrumentów geodezyjnych stanowi w odniesieniu do wymogów prawnych obowiązek służb geodezyjnych wykonujących wszelkiego rodzaju prace geodezyjne. Świadectwo atestacji wydają upoważnione do tego celu jednostki wyposażone w specjalne bazy komparacyjne. Specyfika nowoczesnych instrumentów skanujących wymaga szerszego zakresu prac badawczych dla uzyskania pełnej informacji o rzeczywistej dokładności instrumentu. Szerokie zastosowanie pomiarów bezzwierciadlanych w pracach inwentaryzacyjnych i monitoringu obiektów naturalnych i pochodzenia antropogenicznego wymaga rozpoznana parametrów dokładnościowych określonego instrumentu. Dotyczy to zarówno pozycjonowania głowicy w oparciu o punkty referencyjne, ale także składowe błędu położenia punktu w chmurze. Istotną składową błędu położenia punktów jest błąd pomiaru odległości w opcji pełnej automatyzacji. Automatyzm i prędkość pomiaru zbioru punktów wymaga specyficznego podejścia do sposobu wyznaczenia charakterystyki dalmierza. Można wykorzystać do tego celu bazy już istniejące. W artykule przedstawiono algorytm wykorzystania istniejącej bazy komparacyjnej Geodezyjnego Laboratorium Metrologicznego AGH dla potrzeb testowania dalmierzy bezzwierciadlanych tachimetrów skanujących i skanerów laserowych w zakresie obecnej długości bazy w trybie ciągłym.
Rocznik
Tom
Strony
23--36
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • AGH University of Science and Technology in Krakow, Faculty of Mining Surveying and Environmental Engineering
Bibliografia
  • 1. Abbas M.A., Setan H., Majid Z., Chong A.K., Idris K.M., Aspuri A., (2013): Calibration and Accuracy Assessment of Leica ScanStation C10 Terrestrial Laser Scanner. Developments in Multidimensional Spatian Data Models, Lecture Notes in Geoinformation and Cartography, Springer-Verlag Berlin Heidelberg
  • 2. Abbas M.A., Lichti D.D., Chong A.K., Setan H., Majid Z., (2014): An on-site approach for the self-calibration of terrestial laser scanner, Measurement no. 52, pp. 111–123
  • 3. Antanavičiūtė U., Obuchovski R., , Paršeliūnas E.K., Popovas M.G.D., Šlikas D., (2013): Some issues regarding the calibration of the terrestrial laser scanner Leica Scanstation C10. Geodesy and Cartography, vol. 39
  • 4. Banaś M., (2012): Analiza metod określania poziomych przemieszczeń punktów reprezentujących sieć testową na terenie PWSTE w Jarosławiu. Geomatyka i Inżynieria – kwartalnik PWSTE w Jarosławiu no. 3
  • 5. Bhatla A., Choe S.Y., Fierro O., Leite F., (2012): Evaluation of accuracy of as-built 3D modeling from photos taken by handheld digits cameras, Automation in Construction, vol. 28,m pp. 116–127
  • 6. Bosche F., (2015): Terrestial laser scanning and continuous wavelet transform for controlling surface fl atness in construction – A fi rst investigation, Advanced Engineering Informatics (Article in Press)
  • 7. Buga, A., Jokela, J., Putrimas, R., (2008): Traceability, stability and use of the Kyviskes calibration baseline. 7th International Conference Environmental Engineering, 22–23 May, Vilnius. Technika, pp. 1274–1280
  • 8. Chan T.O., Lichti D., Belton D., (2015): A rigotous cylinder-based self-calibration approach for terrestial laser scanners, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 99, pp. 84–99
  • 9. Chow J.C.K., Lichti D.D., Teskey W.F., (2010): Self-calibration of the Trimble (Mensi) GS200 Terrestrial Laser Scanner. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 Commission V Symposium, Newcastle upon Tyne, United Kingdom
  • 10. Frukacz M., Markiewicz M., (2000): Badanie precyzyjnych łat niwelacyjnych w aspekcie pomiarów sieci wysokościowych I i II klasy, praca magisterska pod kierunkiem dr inż. Andrzeja Pokrzywy (opracowanie niepublikowane), AGH Kraków
  • 11. Gawałkiewicz R., (2005): Określenie charakterystyk dokładnościowych wybranych instrumentów laserowych, Geodezja : półrocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, t. 11 z. 1/1 s. 99–113, Wydawnictwa Naukowo–Dydaktyczne AGH Kraków
  • 12. Gawałkiewicz R., (2006): Nowoczesne technologie geodezyjne w inwentaryzacji wielkokubaturowych obiektów podziemnych, rozprawa doktorska niepublikowana pod kierunkiem prof. dr hab. inż. Jacka Szewczyka, AGH Kraków
  • 13. Golparvar –Fard M., Bohn J., Teizer J., Savarese S., Pena-Mora F., (2011): Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques, Automation in Construction, vol. 20, pp. 1143–1155
  • 14. Hazelton N.W.J (2009): Instrument Calibration for the 21st Century. MSPS 57th Annual Meeting, St. Cloud, MN, 28–30 January
  • 15. Janusz J., Janusz W., (2001): Łamana Baza Długości do komparacji dalmierzy elektromagnetycznych, Prace Instytutu Geodezji i Kartografi i, tom XLVIII, zeszyt 103, s. 115 –138
  • 16. Janusz J., Janusz W., Kołodziejczyk M., (2003): Wzorcowanie niwelatorów cyfrowych i łat kodowych oraz łat z podziałem równomiernym, Instytut Geodezji i Kartografi i, seria monografi czna no. 7, Warszawa
  • 17. Kersten Th., Sternberg H., Mechelke K., Acevedo Pardo C., (2004): Terrestrial laser scanning system Mensi GS100/ GS200 – accuracy tests, experiences and projects at the Hamburg University of applied sciences. Panoramic Photogrammetry Workshop 2004, organised by TU Dresden, University of Stuttgart and ISPRS WG V/1
  • 18. Kutalmis G., Halil E., (2013): The Comparison Of Accuracy Of Length Measurement Obtained From Terrestrial Laser Scanner And Total Station. EGU General Assembly 2013, 7–12 April, 2013 in Vienna, Austria
  • 19. Lechner J., Cervinka L., Umnov I., (2008): Geodetic Surveying Tasks for Establishing a National Long Length Standard Baseline, Integrating Generations, FIG Working Week 14–19 June, Stockholm Sweden
  • 20. Lichti D.D., (2006): Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 61, pp. 307–324
  • 21. Lichti D.D., (2010): Terrestrial laser scanner self-calibration: Correlation sources and their mitigation, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 65, pp. 93–102
  • 22. Marcak H., 2001: Satelitarne obrazy radarowe, Geoinformatica Polonica – Prace Komisji Geoinformatyki, Polska Akademia Umiejetności, zeszyt 3, Kraków
  • 23. Pareja F., Paglos A.G., Oliva J.V., 2013: Terrestial Laser Scanner (TLS) Equipment Calibration, The Manufacturing Engineering Society International Conference, MESIC 2013, Procedia Engineering , no. 63, pp. 278–286
  • 24. Rondeel S., Barry M., Lichti D.D., (2015): Laser Scanner Validation Methods for Land Surveyors. FIG Working Week 2015 From the Wisdom of the Ages to the Challenges of the Modern World Sofi a, Bulgaria, 17–21 May 2015
  • 25. Salo P., Jokinen O., Kukkob A., (2008): On the calibration of the distance measuring component of a Terrestrial Laser Scanner. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5. Beijing
  • 26. Schultz Th., (2007): Calibration of a Terrestrial Laser Scanner for Engineering Geodesy. dissertation, Eidgenössische Technische Hochschule Zürich
  • 27. Skaloud J., Lichti D., 2006: Rigorous approach to bore-sight self-calibration in airborne laser scanning, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 61, pp. 47–59
  • 28. User’s Guide HP 5529A – Hewlett Packard, California USA 1994
  • LEGISLATIONS, STANDARDS
  • [1] Ustawa Prawo o miarach [The Law on Measurements] (Dz. U. z 2004 r. No. 243, position 2441 with later amendments)
  • [2] Dyrektywa o przyrządach pomiarowych (MID – Measuring Instruments Directive), Dziennik Urzędowy Unii Europejskiej No. L135, 30th April 2004 (chapter 13, vol. 34)
  • [3] Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie standardów technicznych wykonywania geodezyjnych pomiarów sytuacyjnych i wysokościowych oraz opracowywania i przekazywania wyników tych pomiarów do państwowego zasobu geodezyjnego i kartografi cznego [The Enactment of the Minister of Internal Aff airs and Administration on technical Standards of Making Surveying and Geodetic Measurements and Processing and Transferring These Results to the State Geodetic and Cartographic Resource] of 9th November 2011 (Dz.U. 263, position 1572)
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f94ef8ea-8bae-4f5b-bd05-7ad0dadc1ef0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.