Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of the investigation was to determine and analyse the changes in the microstructure and mechanical properties of the T92 steel after service in creep conditions of the following parameters: temperature – 575°C, pressure – 28.2 MPa, service time – 41914 hrs. Design/methodology/approach: The tests were performed on the test samples taken from a pipe section of a steam superheater after long-term service. The range of the investigations included: microstructural investigation – the optical and SEM microscopy, the analysis of precipitation – carbide isolates, the investigation of mechanical properties: the Vickers hardness measurement, the impact test and static tensile test. Findings: The performed tests showed a slight degree of exhaustion of the structure of the analysed T92 steel. The relatively small changes in the microstructure of the examined steel were reflected in the still retained high mechanical properties. Research limitations/implications: he analysis of the microstructure of the examined steel using SEM was performed to determine the influence of the service on the processes of changes in the precipitate morphology. Practical implications: The metal science investigation of the sections taken from the elements of the power installations after long-term service is one of the basic elements of building the data base of materials and their joints used in the power industry. The results obtained from the performed research constitute a building block for the degradation characteristics of the microstructure and mechanical properties of martensitic steels of the 9-12%Cr type. Originality/value: The results of investigation and analysis of the metallographic and mechanical properties of martensitic T92 steel after long-term service are presented.
Wydawca
Rocznik
Tom
Strony
5--11
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- Institute of Material Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland b Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Institute of Material Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland b Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Institute of Material Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland b Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Institute of Material Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland b Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Institute of Material Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland b Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
Bibliografia
- [1] P.J. Ennis, A. Zielinska-Lipiec, A. Czyrska-Filemonowicz, Influence of heat treatments on microstructure parameters and mechanical properties of P92 steel, Materials Science and Technology 16/10 (2000) 1226¬1232, DOI: 10.1179/026708300101506993.
- [2] J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heiser, C. Jochum, T/P23, 24, 911 and 92, New grades for advanced coal-fired power plants-properties and experience, International Journal of Pressure Vessels and Piping 85/1-2 (2008) 38-46, DOI: https://doi.org/ 10.1016/j.ijpvp.2007.06.011.
- [3] M. Yoshizawa, M. Igarashia, K. Moriguchia, A. Iseda, H. Ghassemi Armak, K. Maruyama, Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants, Materials Science and Engineering: A 510-511 (2009) 162-168, DOI: https://doi.org/ 10.1016/j.msea.2008.05.055.
- [4] V. Sklenicka, K. Kucharova, M. Svobodova, P. Krai, M. Kvapilova, J. Dvorak, The effect of a prior short¬term ageing on mechanical and creep properties of P92 steel, Materials Characterization 136 (2018) 388-297, DOI: https://doi.Org/10.1016/j.matchar. 2018.01.008.
- [5] J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel, Materials Science and Engineering: A 428/1-2 (2006) 270-275, DOI: https://doi.Org/10.1016/j.msea.2006.05.010.
- [6] A. Zielińska-Lipiec, The analysis of a microstructural stability of modified martensitic 9\% Cr steels during annealing and creep deformation, University Scientific and Educational Publishing AGH, Kraków, 2005 (in Polish).
- [7] G. Golański, J. Jasak, J. Słania, Microstructure, properties, welding of T24 - critical review, Kovove Materiały 52 (2014) 99-106, DOI: 10.4149/km2014299.
- [8] A. Zieliński, G. Golański, M. Sroka, Assessment of microstructure stability and mechanical properties of X10CrWMoVNb9-2 (P92) steel after long-term thermal ageing for high-temperature applications, Kovove Materiały 54 (2016) 1-10, DOI: 10.4149/ km_2016_l_61.
- [9] C.G. Panait, A. Zielińska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.F. Gourgues-Lorenzon, W. Bendick, Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600°C for more than 100,000 h, Materials Science and Engineering: A 27/16-17 (2010) 4062-4069, DOI: https://doi.Org/10.1016/j.msea.2010.03.010.
- [10] PN-EN 10216-2:2014-02 Seamless steel tubes for pressure purposes - Technical delivery conditions - Part 2: Non-alloy and alloy steel tubes with specified elevated temperature properties, PKN, 2015 (in Polish).
- [11] D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal, D.R. Peshwe, D.R. Paretkar, M. Nandagopal, M.D. Mathew, Effect of normalizing and tempering temperatures on micro¬structure and mechanical properties of P92 steel, International Journal of Pressure Vessels and Piping 132- 33 (2015) 97-105, DOI: https://doi.org/10.1016/ j.ijpvp.2015.07.001.
- [12] W. Yan, W. Wang, Y. Shan, K. Yang, Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels, Frontiers of Materials Science 7/1 (2013) 1-27, DOI: https://doi.org/10.1007/sll706-013-0189-5.
- [13] K. Sawada, K. Kubo, F. Abe, Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel, Materials Science and Engineering: A 319-321 (2001) 784-787, DOI: https://doi.org/10.1016/S0921-5093(01)00973-X.
- [14] K. Masuyama, K. Sawada, J. Koike, Strengthening mechanism of creep resistant tempered martensitic steel, ISIJ International 41/6 (2001) 614-653, DOI: https:// doi. org/10.2355/isij international. 41.641.
- [15] Q. Gao, Y. Zhang, H. Zhang, H. Li, F. Qu, J. Han, C. Lu, B. Wu, Y. Lu, Y. Ma, Precipitates and particles coarsening of 9Cr-1.7W-0.4Mo-Co ferritic heat- resistant steel after isothermal aging, Scientific Reports 7 (2017) 1-11, Article number: 5859, DOI: https://doi.org/10.1038/s41598-017-06191-2.
- [16] M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabea, G. Eggelera, The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels, Acta Materialia 90 (2015) 94-104, DOI: https://doi.org/10.1016/ j.actamat. 015.01.027.
- [17] Z. Xia, C. Wang, C. Lei, Y. Lai, Y. Zhao, L. Zhang, Growth kinetics of Laves phase and its effect on creep rupture behavior in 9Cr heat resistant steel, Journal of Iron and Steel Research, International 23/7 (2016) 685-691, DOI: https://doi.org/10.1016/ S1006-706X(16)30106-6.
- [18] L. Maddi, G.S. Deshmukh, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, K. Laha, M.D. Mathew, Effect of Laves phase on the creep rupture properties of P92 steel, Materials Science and Engineering: A 668 (2016) 215-223, DOI: https://doi.Org/10.1016/j.msea. 2016.05.074.
- [19] M.I. Isik, A. Kostka, G. Eggeler, On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels, Acta Materialia 81 (2014) 230-240, DOI: https://doi.Org/10.1016/j.actamat.2014.08.008.
- [20] G. Golański, I. Pietryka, J. Słania, S. Mroziński, J. Jasak, Microstructure and mechanical properties of CrMoV steel after long term service, Archives of Metallurgy and Materials 61/1 (2016) 51-54, DOI: 10.151 5/amm-201 6-0014.
- [21] A. Zieliński, J. Dobrzański, H. Krztoń, Structural changes in low alloy cast steel CrMoV after long time creep service, Journal of Achievements in Materials and Manufacturing Engineering 25/1 (2007) 33-36.
- [22] J. Dobrzański, A. Zieliński, M. Sroka, The influence of simultaneous impact of temperature and time on the properties and structure of X10CrWMoVNb9-2 steel, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 7-14.
- [23] G. Golański, A. Zieliński, J. Słania, K. Jasak, Mechanical properties of VM12 steel after 30 000 hrs of ageing at 600°C temperature, Archives of Metallurgy and Materials 59/4 (2014) 1357-1360, DOI: https://doi.org/10.2478/amm-2014-0230
- [24] Y. Xu, Y. Nie, M. Wang, W. Li, X. Jin, The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging, Acta Materialia 131 (2017) 110¬122, DOI: https://doi.Org/10.1016/j.actamat.2017.03. 045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f94e419d-2b88-4277-bfb0-31a8b72d5864