PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Fossil bacteria in Cenomanian–Turonian phosphate nodules and coprolites, Bohemian Cretaceous Basin, Czech Republic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phosphatized biomorphs, resembling modern and ancient bacteria, were identified for the first time in phosphate nodules, present at the base of the Bílá Hora Formation (uppermost Cenomanian - lower Turonian), and in phosphate coprolites at the base of the Teplice Formation (upper Turonian) in the Bohemian Cretaceous Basin. They are present in colonies as filaments, coccoids, strings, rods and outgrowths, associated with the phosphate as part of the rock constituents and display the characteristics of fossilized bacteria. Two types of bacteria were identified: chemotrophic, sulphur-reducing bacteria in the phosphate nodules and phototrophic cyanobacteria in the phosphate coprolites. Microanalysis of some of the fossil bacteria revealed a fluoride-rich calcium phosphate composition, compatible with the composition of bulk samples, in which carbonate-fluorapatite is the main mineral in the phosphate nodules and coprolites. The environmental indications of these fossil bacteria support the interpretation of an anoxic environment of phosphogenesis in the latest Cenomanian - earliest Turonian and variable redox conditions of coprolite phosphatization in the late Turonian. The potential microbial role in phosphogenesis in the former may have involved the suboxic breakdown of P-rich organic matter by sulphur-reducing bacteria and the release of phosphorus in the pore water, leading to the biochemical precipitation of phosphate. The latter involved initial P-storage by phototrophic bacteria in an oxic environment, followed by P-release below the sediment-water interface under suboxic conditions and subsequent phosphatization of the coprolites.
Rocznik
Strony
257--272
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
autor
  • Czech Geological Survey, Klarov 3, 11821 Prague 1, Czech Republic
autor
  • Czech Geological Survey, Geologicka 6, 15200 Prague 5, Czech Republic
Bibliografia
  • 1. Al-Bassam, K. & Magna, T., 2018. Distribution and significance of rare earth elements in Cenomanian-Turonian phosphate components and mudstones from the Bohemian Cretaceous Basin, Czech Republic. Bulletin of Geosciences, 93: 347-368.
  • 2. Arning, E. T., 2008. Phosphogenesis in Coastal Upwelling Systems-Bacterially-Induced Phosphorite Formation. Ph.D. thesis, University of Bremen, Germany, 149 pp.
  • 3. Arning, E. T., Birgel, D, Brunner, B. & Peckmann, J., 2009. Bacterial formation of phosphatic laminites off Peru. Geobiology, 7: 295-307.
  • 4. Astafieva, M. M. & Rozanov, A. Yu., 2012. Bacterial-paleontological study of Early Precambrian weathering crusts. Earth Science Research, 1: 163-170.
  • 5. Bailey, J. V., Corsetti, F. A., Greene, S. E., Crosby, C. H., Liu, P. & Orphan, V. J., 2013. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Geobiology, 11: 397-405.
  • 6. Bailey, J. V, Joye, S. B., Kalanetra, K. M., Flood, B. E. & Corsetti, F. A., 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445: 198-201.
  • 7. Bailey, J. V., Orphan, V. J., Joye, S. B. & Corsetti, F. A., 2009. Chemotrophic microbial mats and their potential for preservation in the rock record. Astrobiology, 9: 843-859.
  • 8. Benzerara, K., Yoon, T. H., Tyliszczak, T. Constantz, B., Spormann, A. M. & Brown, G. E., 2004. Scanning transmission X-ray microscopy study of microbial calcification. Geobiology, 2: 249-259.
  • 9. Berndmeyer, C., Birgel, D., Brunner, B., Wehrmann, L. M., Jons, N., Bach, W., Arning, E. T., Föllmi, K. B. & Peckmann, J., 2012. The influence of bacterial activity on phosphorite formation in the Miocene Monterey Formation, California. Palaeogeography, Palaeoclimatology, Palaeoecology, 317-318: 171-181.
  • 10. Brock, J. & Schulz-Vogt, H. N., 2011. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. International Society for Microbial Ecology (ISME) Journal, 5: 497-506.
  • 11. Buck, K. R. & Barry, J. P., 1998. Monterey Bay cold seep fauna: quantitative comparison of bacterial mat meiofauna with nonseep control sites. Cahiers de Biologie Marine, 39: 333-335.
  • 12. Buick, R., 1990. Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 M.Y old chert-barite unit at North Pole, Western Australia. Palaios, 5: 441-459.
  • 13. Burnett, W. C., 1977. Geochemistry and origin of phosphorite deposits from off Peru and Chile. Geological Society of America Bulletin, 88: 813-823.
  • 14. Čech, S., Klein, V., Kříž, J. & Valečka, J., 1980. Revision of the Upper Cretaceous stratigraphy of the Bohemian Cretaceous Basin. Věstnik Ústředního Ústavu Geologického, 55: 277-296.
  • 15. Čech, S., Hradecká, L., Laurin, J., Štaffen, Z., Švábenická, I. & Uličný, D., 1996. Úpohlavy quarry: record of the late Turonian sea-level oscillations and synsedimentary tectonic activity. Stratigraphy and Facies of the Bohemian-Saxonian Cretaceous Basin. In: Field Trip Guide, 5th International Cretaceous Symposium, Freiberg, pp. 32-42.
  • 16. Čech, S., Hradecká, L., Svobodová, M. & Švábenická, L., 2005. Cenomanian and Cenomanian-Turonian boundary in the southern part of the Bohemian Cretaceous Basin, Czech Republic. Bulletin of Geosciences, 80: 321-354.
  • 17. Crosby, C. H. & Bailey, J. V., 2012. The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Frontiers in Microbiology, 3: 1-7.
  • 18. Dempírová, L., Šikl J., Kašičková, R., Zoulková, V. & Kříbek, B., 2010. The evaluation of precision and relative error of the main components of silicate analyses in Central Laboratory of the Czech Geological Survey. Geoscience Research Reports, 43: 326-330
  • 19. Edwards, C. T., Pufahl, P. K., Hiatt, E. E. & Kyser, T. K., 2012. Paleoenvironmental and taphonomic controls on the occurrence of paleoproterozoic microbial communities in the 1.88 Ga Ferriman Group, Labrador Trough. Canada. Precambrian Research, 212-213: 91-106.
  • 20. Föllmi, K. B., 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Science Review, 40: 55-124.
  • 21. Fossing, H., Gallardo, V A., Jorgensen, B. B., Huttel, M., Nielsen, L. P., Schulz, D., Canfield, E., Forster, S., Glud, R. N., Gundersen, J. K., Kuver, J., Ramsing, N. B., Teske, A., Thamdrup, B. & Ulloa, O. 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature, 374: 713-715.
  • 22. Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R. & Devries, T., 1982. The marine phosphorus cycle. American Journal of Science, 282: 474-511.
  • 23. Gallardo, V. A., 1977. Large benthic microbial communities in sulfide biota under Peru-Chile subsurface counter current. Nature, 268: 331-332.
  • 24. Gallardo, V. A. & Espinoza, C., 2007. New communities of large filamentous sulfur bacteria in the eastern South Pacific. International Microbiology, 10: 97-102.
  • 25. Goldhammer, T., Bruchert, V., Ferdelman, T. G. & Zabel, M., 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nature Geoscience, 3: 557-561.
  • 26. Gulbrandsen, R. A., 1970. Relation of carbon dioxide content of apatite of the Phosphoria Formation to regional facies. U.S. Geological Survey Professional Paper, 700B: B9-B13.
  • 27. Hiatt, E. E., Pufahl, P. K. & Edwards, C. T., 2015. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Michigan, USA. Sedimentary Geology, 319: 24-39.
  • 28. Hoffman, L., 1999. Marine cyanobacteria in tropical regions: diversity and ecology. European Journal of Phycology, 34: 371-379.
  • 29. Ingall, E. & Jahnke, R., 1994. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochimica et Cosmochimica Acta, 58: 2571-2575.
  • 30. Jarvis, I., Gale, A. S., Jenkyns, H. C. & Pearce, M. A., 2006. Secular variation in Late Cretaceous carbon isotopes: a new S13C carbonate reference curve for the Cenomanian-Campanian (99.6-70.6 Ma). Geological Magazine, 143: 561- 608.
  • 31. Kazmierczak, J. Coleman, M. L., Gruszczynski, M. & Kempe, S., 1996. Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas. Palaeontologica Polonica, 41: 319-338.
  • 32. Kear, B. P., Ekrt, B., Prokop, J. & Georgalis, G., 2013. Turonian marine amniotes from the Bohemian Cretaceous Basin, Czech Republic. Geological Magazine, 151: 183-198.
  • 33. Konhauser, K. O., 2007. Introduction to Geomicrobiology. Blackwell Science, London, 425 pp.
  • 34. Košťák, M., Čech, S., Uličný, D., Sklenář, J., Ekrt, B. & Mazuch, M., 2018. Ammonites, inoceramids, and stable carbon isotopes of the Cenomanian-OAE2 interval in Central Europe: Pecínov quarry, Bohemian Cretaceous Basin (Czech Republic). Cretaceous Research, 87: 150-173.
  • 35. Krajewski, K. P., van Cappellen, P., Trichet, J., Kuhn, O., Lukas, J., Martin-Algarra, A., Prevot, L., Tewari, V. C., Gasper, I., Knight, R. I. & Lamboy, M., 1994. Biological processes and apatite formation in sedimentary environments. Eclogae Geologicae Helvetica, 87: 701-745.
  • 36. Lamboy, M., 1994. Nannostructure and genesis of phosphorites from ODP Leg 112, the Peru margin. Marine Geology, 118: 5-22.
  • 37. Laurin, J., 1996. Sedimentary Discontinuities with Evidences of Phosphatic Mineralization as a Record of the Changes of Sea Level; Bohemian Cretaceous Basin. M.Sc. Diploma thesis, Charles University, Prague, 122 pp. [In Czech, with English summary.]
  • 38. Lepland, A., Joosu, L., Kirsimäe, K., Prave, A. R., Romashkin, A. E., Črne, A. E., Martin, A. P., Fallick, A. E., Somelar, P., Üpraus, K., Mänd, K., Roberts, N. M. W., van Zuilen, M. A., Wirth, R. & Schreiber, A., 2013. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis. Nature Geoscience, 7: 20-24.
  • 39. Li, Y. & Schieber, J., 2015. On the origin of phosphate enriched interval in Chattanooga Shale (Upper Devonian) of Tennessee-A combined sedimentologic, petrographic and geochemical study. Sedimentary Geology, 329: 40-61.
  • 40. Nathan, Y, Bremner, J. M., Loewenthal, R. E. & Monterio, P., 1993. Role of bacteria in phosphorite genesis. Geomicrobiology, 11: 69-76.
  • 41. Palinska, K. A., Thomasius, C. F., Marquardt, J. & Golubic, S., 2006. Polygenetic evolution of cyanobacteria preserved as historic herbarium exsiccate. International Journal of Systematic and Evolutionary Microbiology, 58: 2253-2263.
  • 42. Perdikatsis, B., 1991. X-ray powder diffraction study of francolite by the Rietveld method. Material Science Forum, 79/82: 809-814.
  • 43. Philp, R. P. & Calvin, M., 1976. Possible origin for insoluble organic (kerogen) debris in sediments from insoluble cell wall materials of algae and bacteria. Nature, 262: 134-136.
  • 44. Raff, E. C., Schollaert, K. L., Nelson, D. E, Donoghue, P. C., Thomas, C., Turner, F. R., Stein, B. D., Dong, X., Bengtson, S. & Huldtgren, T., 2008. Embryo fossilization is a biological process mediated by microbial biofilms. Proceedings of the National Academy of Science, U.S.A., 105: 19360-19365.
  • 45. Reimers, C. E., Kastner, M. & Garrison, R. E., 1990. The role of bacterial mats in phosphate mineralization with particular reference to Monterey Formation. In: Burnett, W. C. & Riggs, S. R. (eds), Phosphate Deposits of the World 3, Cambridge University Press, New York. pp. 300-311.
  • 46. Regnier, P., Lasaga, A. C. & Berner, R. A., 1994. Mechanism of CO32- substitution in carbonate-fluorapatite: Evidence from FTIR spectroscopy, 13C NMR and quantum mechanical calculations. American Mineralogist, 79: 809-818.
  • 47. Schieber, J., 1989. Pyrite mineralization in microbial mats from the mid-Proterozoic Newland Formation, Belt Supergroup, Montana, U.S.A. Sedimentary Geology, 64: 79-90.
  • 48. She, Z.-B., Strother, P. & Papineau, D., 2014. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites II: Microbial diversity and C isotopes. Precambrian Research, 251: 62-79
  • 49. Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D. & Tripathi, A. B., 2006. Evidence of Archean life: Stromatolites and microfossils. Precambrian Research, 158: 141-155.
  • 50. Schulz, H. H., Jorgensen, B. B., Fossing, H. A. & Ramsing, N. B., 1995. Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp., off the coast of Chile. Applied Environmental Microbiology, 62: 1855-1862.
  • 51. Schulz, H. N. & Schulz, H. D., 2005. Large sulfur bacteria and the formation of phosphorite. Science, 307: 416-418.
  • 52. Schulz, H. N., Brinkhoff, T. Ferdelman, T. G., Hernández Mariné, M., Teske, A. & J0rgensen, B. B., 1999. Dense population of a giant sulfur bacterium in Namibian shelf sediments. Science, 284: 493-495.
  • 53. Soudry, D. & Champetier, Y, 1983. Microbial processes in the Negev phosphorites (southern Israel). Sedimentology, 30: 411-423.
  • 54. Soudry, D. & Lewy, Z., 1988. Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology, 64: 15-34.
  • 55. Uličný, D., 1997. Sedimentation in a reactivated intra-continental strike-slip fault zone: The Bohemian Cretaceous Basin, Central Europe. In: Abstracts, 18th IAS Regional European Meeting, Heidelberg. Gaea Heidelbergensis, 3: 347.
  • 56. Uličný, D., 2001. Depositional systems and sequence stratigraphy of coarse-grained deltas in a shallow-marine, strike-slip setting: the Bohemian Basin, Czech Republic. Sedimentology, 48: 599-628.
  • 57. Uličný, D., Hladíková, J., Attrep Jr., M. J., Čech, S., Hradecká, L. & Svobodová, M., 1997. Sea-level changes and geochemical anomalies across the Cenomanian-Turonian boundary: Pecínov quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology, 132: 265-285.
  • 58. Uličný, D., Špičáková, L., Grygar, R., Svobodová, M., Čech, S. and Laurin, J., 2009. Palaeodrainage systems at the basal unconformity of the Bohemian Cretaceous Basin: roles of inherited fault systems and basement lithology during the onset of basin filling. Bulletin of Geosciences 84, 577-610.
  • 59. Valečka, J. & Skoček, V., 1991. Late Cretaceous lithoevents in the Bohemian Cretaceous Basin, Czechoslovakia. Cretaceous Research, 12: 561-577.
  • 60. Vincent, W. F., 2009. Cyanobacteria. In: Likens, G. E. (ed.), Encyclopedia of Inland Waters, vol. 3. Elsevier, Oxford, pp. 226-232.
  • 61. Vodrážka, R., Sklenář, J., Čech, S., Laurin, J. & Hradecká, L., 2009. Phosphatic intraclasts in shallow-water hemipelagic strata: a source of palaeoecological, taphonomic and biostratigraphic data (Upper Turonian, Bohemian Cretaceous Basin). Cretaceous Research, 30: 204-222.
  • 62. Westall, F., 1999. The nature of fossil bacteria: a guide to the search for extraterrestrial life. Journal of Geophysical Research, 104: 16437-16451.
  • 63. Whitney, D. L. and Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
  • 64. Wiese, F., Čech, S., Ekrt, B., Košťák, M., Mazuch, M. & Voigt, S., 2004. The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Úpohlavy working quarry: integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretaceous Research, 25: 329-352.
  • 65. Williams, L. A. & Reimers, C., 1983. Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regions: Preliminary report. Geology, 11: 267-269.
  • 66. Žítt, J., Nekvasilová, O., Hradecká, L., Svobodová, M. & Záruba, B., 1998. Rocky coast facies of the Unhost-Tursko High (Late Cenomanian-Turonian, Bohemian Cretaceous Basin). Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 54: 79-116.
  • 67. Žítt, J., Vodrážka, R., Hradecká, L., Svobodová, M., Šťastný, M. & Švábenická, L., 2015. Depositional and palaeoenvironmental variation of Lower Turonian nearshore facies in the Bohemian Cretaceous Basin, Czech Republic. Cretaceous Research, 56: 293-315.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f94e24d0-47a1-4e89-b709-5652853793ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.