Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, effects of changeable transverse and longitudinal pitches and porous media inserts on overall heat transfer from an elliptic tube bundle are studied numerically. Go- verning equations used for the analysis of fluid flow inside the porous media inserts are Darcy-Brinkman-Forchheimer equations, and for the fluid flow without porous inserts are classical Navier-Stokes equations. A finite volume code is used to solve the governing equ- ations. The tube bundle consists of 10 rows of elliptical tubes 3.17 cm in major diameter and 1.4 cm in minor diameter in a staggered arrangement. Aluminum foams are used as porous media inserts between the tubes with three different porosities. It is shown that the use of the aluminum foam enhances heat transfer significantly (more than 50% in some cases). However, the pressure drop increases as the Reynolds number grows. The differences among various cases are also discussed. Finally, it is shown that the overall heat transfer efficiency increases more effectively by increasing the transverse pitch with respect to the longitudinal and diagonal pitches while the flow regime remains laminar.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
767--780
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
autor
- Faculty of Natural Resources, University of Tehran, Karaj, Iran
autor
- Takestan Branch, Islamic Azad University, Takestan, Iran
autor
- Faculty of Mechanical Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
Bibliografia
- 1. Bastawros A.F., 1998, Effectiveness of open-cell metallic foams for high power electronic cooling, ASME Conference Proceedings HTD-361-3/PID-3, 211-217
- 2. Berbish N.S., 2011, Heat transfer and flow behavior around four staggered elliptic cylinders in cross flow, Heat and Mass Transfer, 47, 3, 287-300
- 3. Bhattacharya A., Mahajan R. L., 2002, Finned metal foam heat sinks for electronic cooling in forced convection, Journal of Electronic Packaging, 124, 3, 155-163
- 4. Bordalo S.N., Saboya F.E.M., 1999, Pressure drop coefficients for elliptic and circular sections in one, two and three-row arrangements of plate fin and tube heat exchangers, Journal of Brazilian Society of Mechanical Sciences, 21, 4, 600-610
- 5. Chen H.T., Lai J.R., 2012, Study of heat transfer characteristics on the fin of two-row plate finned-tube heat exchangers, International Journal of Heat and Mass Transfer, 55, 15/16, 4088-4095
- 6. Horvat A., Leskovar M., Mavko B., 2006, Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes, International Journal of Heat and Mass Transfer, 49, 5, 1027-1038
- 7. Horvat A., Mavko B., 2006, Heat transfer conditions in flow across a bundle of cylindrical and ellipsoidal tubes, Numerical Heat Transfer, Part A, 49, 7, 699-715
- 8. Ibrahim T. A., Gomaa A., 2009, Thermal performance criteria of elliptic tube bundle in cross flow, International Journal of Thermal Sciences, 48, 11, 2148-2158
- 9. Jang J.Y., Yang J.Y., 1998, Experimental and 3-d numerical analysis of the thermal-hydraulic characteristics of elliptic finned-tube heat exchangers, Heat Transfer Engineering, 19, 4, 55-67
- 10. Kim S.J., Jang S.P., 2002, Effects of the Darcy number, Prandtl number, and the Reynolds number on local thermal non-equilibrium, International Journal of Heat and Mass Transfer, 45, 19, 3885-3896
- 11. Kim J.Y., Song T.H., 2002, Microscopic phenomena and macroscopic evaluation of heat transfer from plate fins/circular tube assembly using naphthalene sublimation technique, International Journal of Heat and Mass Transfer, 45, 16, 3397-3404
- 12. Layeghi M., 2008, Numerical analysis of wooden porous media effects on heat transfer from a staggered tube bundle, ASME Journal of Heat Transfer, 130, 1, 014501-1-6
- 13. Leonard B.P., 1995, Order of accuracy of quick and related convection-diffusion schemes, Applied Mathematical Modelling, 19, 11, 640-653
- 14. Li Z., Davidson J.H., Mantell S.C., 2006, Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow, ASME Journal of Heat Transfer, 128, 6, 564-570
- 15. Mahdi H., Lopez P., Fuentes A.A., Jones R., 2006, Thermal performance of aluminum-foam CPU heat exchangers, International Journal of Energy Research, 30, 11, 851-860
- 16. Marchi C.H., 2007, Numerical solution of staggered circular tubes in two-dimensional laminar forced convection, Federal University of Parana – UFPR Department of Mechanical Engineering, 42-48
- 17. Matos R.S., Laursen T.A., Vargas J.V.C., Bejan A., 2004, Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection, International Journal of Thermal Sciences, 43, 5, 477-487
- 18. Matos R.S., Vargas J.V.C., Laursen T.A., Bejan A., 2004, Optimally staggered finned circular and elliptic tubes in forced convection, International Journal of Heat and Mass Transfer, 47, 6, 1347-1359
- 19. Patankar S.V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York
- 20. Pavel B.I., Mohamad A.A., 2004, Experimental investigation of the potential of metallic porous inserts in enhancing forced convective heat transfer, ASME Journal of Heat Transfer, 126, 4, 540-545
- 21. Rocha L.A.O., Saboya F.E.M., Vargas J.V.C., 1997, A comparative study of elliptical and circular sections in one and two-row tubes and plate fin heat exchangers, International Journal of Heat Fluid Flow, 18, 2, 247-252
- 22. Rosman E.C., Carajilescov P., Saboya F.E.M., 1984, Performance of tube of one and two-row tube and plate fin heat exchangers, ASME Journal of Heat Transfer, 106, 3, 627-632
- 23. Ruge J., Stuben K., 1987, Algebraic Multigrid in Multigrid Methods, S. Mc-Cormick, ed., Vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadelphia, ch. 4, 73-130
- 24. Shih W.H., Chiu W.C., Hsieh W.H., 2006, Height effect on heat transfer characteristics of aluminum-foam heat sinks, ASME Journal of Heat Transfer, 128, 6, 530-537
- 25. Simo Tala J.V., Bougeard D., Russeil S., Harion J.-L., 2012, Tube pattern effect on thermal hydraulic characteristics in a two-rows finned-tube heat exchanger, International Journal of Thermal Science, 60, 6, 225-235
- 26. Tadrist L., Miscevic M., Rahli O., Topin F., 2004, About the use of fibrous materials in compact heat exchangers, Experimental Thermal and Fluid Science, 28, 2/3, 193-199
- 27. Talaat A.I., Abdalla G., 2009, Thermal performance criteria of elliptic tube bundle in cross flow, International Journal of Thermal Science, 48, 2148-2158
- 28. Tao Y.B., He Y.L., Wu Z.G., Tao W.Q., 2007, Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes, International Journal of Heat Fluid Flow, 28, 6, 1531-1544
- 29. Thirumalai Kannan K., Senthil Kumar B., 2011, Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with different shaped vortex generators, International Journal of Soft Computing and Engineering, 2, 1, 2231-2307
- 30. T’Joen C., De Jaeger P., Huisseune H., Van Herzeele S., Vorst N., De Paepe M., 2010, Thermo-hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes, International Journal of Heat and Mass Transfer, 53, 15/16, 3262-3274
- 31. Torikoshi K., Xi G., Nakazawa Y., Asano H., 1994, Flow and heat transfer performance of a plate fin and tube heat exchanger (1st report: effect of fin pitch), 10th International Heat Transfer Conference, paper 9-HE-16, 411-416
- 32. Webb R.L., 1980, Air-side heat transfer in finned tube heat exchangers, Heat Transfer Engineering, 1, 3, 33-49
- 33. Zukauskas A., 1972, Heat transfer from tubes in cross flow, Advances in Heat Transver, 8, 93-160
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f94cf59a-7087-451e-870a-ccd81ae53e56