PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced catalytic activity of zeolitic imidazolate frameworks (ZIF-8) polyelectrolyte complex composites membranes by laser etching

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of laser etching on the surface properties of composite polyelectrolyte complex (PEC) based membranes as mixed matrix membranes was studied. The PECs were prepared by the stoichiometric mixing of cationic PDDA (poly(diallyl dimethyl ammonium chloride)) and anionic PSS (poly(sodium 4-styrene sulfonate)) as polyelectrolytes with various contents of ZIF-8 as filler. Composite membranes usually display improved bulk properties depending on the nature of the filler, but the surface properties are often dictated by the matrix covering the surface. The PEC composite membranes were then subjected to laser etching, resulting in the enhanced exposure of embedded ZIF-8 particles within the PEC structure in an attempt to improve the surface properties of the composite membrane. The crystal structure, morphology, and distribution of zinc at the PECs surface, before and after laser etching, were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS), respectively. In order to evaluate the improvement of the surface properties of the laser-etched membranes, a model experiment involving a catalytic reaction was chosen. The pristine and laser treated surfaces were tested for their catalytic activity for the transesterification of triglycerides present in soybean oil with methanol at a temperature of 150°C. Interestingly, the laser-etched PECs displayed substantially enhanced activity compared to the original composite PEC membranes as a result of surface erosion. These results could be interesting for the future development of composite membranes with improved surface properties where the filler needs to expose the surface of the membranes.
Słowa kluczowe
Wydawca
Rocznik
Strony
52--61
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
  • The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
  • Center of Excellence on Petrochemical and Materials Technology, Bangkok 10330, Thailand
  • The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
  • Center of Excellence on Petrochemical and Materials Technology, Bangkok 10330, Thailand
Bibliografia
  • [1] Li L, Srivastava S, Meng S, Ting JM, Tirrell MV. Effects of non-electrostatic intermolecular interactions on the phase behavior of pH-sensitive polyelectrolyte complexes. Macromolecules. 2020; 53(18): 7835–7844.
  • [2] Adhikari S, Leaf MA, Muthukumar M. Polyelectrolyte complex coacervation by electrostatic dipolar interactions. J Chem Phys. 2018; 149(16): 163308.
  • [3] Nikolova D, Simeonov M, Tzachev C, Apostolov A, Christov L, Vassileva E. Polyelectrolyte complexes of chitosan and sodium alginate as a drug delivery system for diclofenac sodium. Polym Int. 2022; 71(6): 668–678.
  • [4] Ivanov A, Davletshina R, Sharafieva I, Evtugyn G. Electrochemical biosensor based on polyelectrolyte complexes for the determination of reversible inhibitors of acetylcholinesterase. Talanta. 2019; 194: 723–730.
  • [5] Debbarma L, Panwar V, Khanduri P, Panwar LS. Development of flexible PVDF/PAMPS polyelectrolyte proton conductive membrane. Mater Today: Proc. 2020; 26: 1776–1779.
  • [6] Zhao Q, An QF, Ji Y, Qian J, Gao C. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J Membr Sci. 2011; 379(1-2): 19–45.
  • [7] Luo J, Shi C, Qian X, Zhou K. Novel design and synthesis of bio-based polyelectrolyte complexes for enhancing the flame retardancy of epoxy resin. Mater Chem Phys. 2022; 291: 126674.
  • [8] Dubas ST, Schlenoff JB. Swelling and smoothing of polyelectrolyte multilayers by salt. Langmuir. 2001; 17(25): 7725–7727.
  • [9] Dautzenberg H, Kriz J. Response of polyelectrolyte complexes to subsequent addition of salts with different cations. Langmuir. 2003; 19(13): 5204–5211.
  • [10] Zelner M, Jahn P, Ulbricht M, Freger V. A mixed-charge polyelectrolyte complex nanofiltration membrane: Preparation, performance and stability. J Membr Sci. 2021; 636: 119579.
  • [11] Li Z, Wang J, Liu X, Liu S, Ou J, Yang S. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J Mater Chem. 2011; 21(10): 3397–3403.
  • [12] Teng X, Yu C, Wu X, Dong Y, Gao P, Hu H, et al. PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application. J Mater Sci. 2018; 53: 5204–5215.
  • [13] Shutava T, Jansen C, Livanovich K, Pankov V, Janiak C. Metal organic framework/polyelectrolyte composites for water vapor sorption applications. Dalton Trans. 2022; 51(18): 7053–7067.
  • [14] Houle FA. Basic mechanisms in laser etching and deposition. Appl Phys A. 1986; 41: 315–330.
  • [15] Dalaq AS, Barthelat F. Three-Dimensional Laser Engraving for Fabrication of Tough Glass-Based Bioinspired Materials. JOM. 2020; 72(4): 1487–1497. doi: 10.1007/s11837-019-04001-w
  • [16] Gabriel EFM, Coltro WKT, Garcia CD. Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis. 2014; 35(16): 2325–2332. doi: 10.1002/elps.201300511
  • [17] Pavithra B, Prabhu SG, Nayak MM. Design, development, fabrication, and testing of low-cost, laser-engraved, embedded, nano-composite-based pressure sensor. ISSS J Micro Smart Syst. 2022; 11(2): 349–353. doi: 10.1007/s41683-021-00076-3
  • [18] Yang Z, Li W, Liu S, Gao Q. Study on overlap rate and machinability of selected laser melting of maraging steel. Mater Sci-Pol. 2023; 41(2): 368–382.
  • [19] Li Y, Fischer R, Zboray R, Boillat P, Camenzind M, Toncelli C, et al. Laser-engraved textiles for engineering capillary flow and application in microfluidics. ACS Appl Mater Interfaces. 2020; 12(26): 29908–29916.
  • [20] Konstantinou G, Chil R, Desco M, Vaquero JJ. Subsurface laser engraving techniques for scintillator crystals: methods, applications, and advantages. IEEE Trans Radiat Plasma Med Sci. 2017; 1(5): 377–384. doi: 10.1109/TRPMS.2017.2714265.
  • [21] Wang M, Yang Y, Gao W. Laser-engraved graphene for flexible and wearable electronics. Trends Chem. 2021; 3(11): 969–981. doi: 10.1016/j.trechm.2021.09.001
  • [22] Pungjunun K, Yakoh A, Chaiyo S, Praphairaksit N, Siangproh W, Kalcher K, et al. Laser engraved microapillary pump paper-based microfluidic device for colorimetric and electrochemical detection of salivary thiocyanate. Microchem Acta. 2021; 188(4): 140. doi: 10.1007/s00604-021-04793-2.
  • [23] Vivaldi FM, Dallinger A, Bonini A, Poma N, Sembranti L, Biagini D, et al. Three-dimensional (3D) laser-induced graphene: structure, properties, and application to chemical sensing. ACS Appl Mater Interfaces. 2021; 13(26): 30245–30260.
  • [24] Ravi-Kumar S, Lies B, Zhang X, Lyu H, Qin H. Laser ablation of polymers: A review. Polym Int. 2019; 68(8): 1391–1401.
  • [25] Wang T, Wang Y, Sun M, Hanif A, Wu H, Gu Q, et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chem Sci. 2020; 11(26): 6670–6681. doi: 10.1039/D0SC01397H
  • [26] Canilho N, Jacoby J, Pasc A, Carteret C, Dupire F, Stébé MJ, et al. Isocyanate-mediated covalent immobilization of Mucor miehei lipase onto SBA-15 for transesterification reaction. Colloids Surf, B. 2013; 112: 139–145. doi: 10.1016/j.colsurfb.2013.07.024
  • [27] Cravillon J, Schröder CA, Bux H, Rothkirch A, Caro J, Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm. 2012; 14(2): 492–498. doi: 10.1039/C1CE06002C.
  • [28] Kaur H, Mohanta GC, Gupta V, Kukkar D, Tyagi S. Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J Drug Delivery Sci Technol. 2017; 41: 106–112. doi: 10.1016/j.jddst.2017.07.004
  • [29] Beh JJ, Lim JK, Ng EP, Ooi BS. Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): From the perspective of reaction kinetics and thermodynamics of nucleation. Mater Chem Phys. 2018; 216: 393–401. doi: 10.1016/j.matchemphys.2018.06.022
  • [30] Ta DN, Nguyen HKD, Trinh BX, Le QTN, Ta HN, Nguyen HT. Preparation of nano-ZIF-8 in methanol with high yield. Can J Chem Eng. 2018; 96(7): 1518–1531. doi: 10.1002/cjce.23155
  • [31] De Geest BG, Jonas AM, Demeester J, De Smedt SC. Glucose-responsive polyelectrolyte capsules. Langmuir. 2006; 22(11): 5070–5074.
  • [32] Zhang W, Wu L, Du L, Yue L, Guan R, Zhang Q, et al. Layer-by-layer assembly modification to prepare firmly bonded Si–graphene composites for high-performance anodes. RSC Adv. 2016; 6(6): 4835–4842.
  • [33] Gui Z, Du B, Qian J, An Q, Zhao Q. Construction and deconstruction of multilayer films containing polycarboxybetaine: Effect of pH and ionic strength. J Colloid Interface Sci. 2011; 353(1): 98–106.
  • [34] Zhang H, Zhao M, Yang Y, Lin YS. Hydrolysis and condensation of ZIF-8 in water. Microporous and Mesoporous Materials. 2019; 288: 109568.
  • [35] Jing H-P, Wang C-C, Zhang Y-W, Wang P, Li R. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014; 4(97): 54454–54462.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f94ae7cf-024f-4737-a2f0-c3c509d7751c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.