PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Toward downscaling oceanic hydrodynamics : suitability of a high-resolution OGCM for describing regional ocean variability in the South China Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We suggest to transfer the empirical downscaling methodology, which was developed mostly for atmospheric dynamics and impacts, to regional ocean problems. The major problem for doing so is the availability of decades-long and homogeneous and spatially detailed data sets. We have examined the performance of the STORM multidecadal simulation, which was run on a 0.1° grid and forced with 1950–2010 NCEP re-analyses, in the South China Sea and found the data suitable. For demonstration we build with this STORM-data downscaling model for the regional throughflow. The STORM data is compared with AVISO satellite observations and the ocean re-analysis dataset C-GLORS. We find the seasonal patterns and the inter-annual variability of sea surface height anomaly in both the C-GLORS data and the STORM simulation consistent with the AVISO-satellite data. Also the strong westward intensification and the seasonal patterns of South China Sea circulation steered by the monsoon have been presented well. As an important indicator of vertical movement, the sea surface temperature distribution maps are also very close, especially for the narrow upwelling region in summer. We conclude that the output of the STORM simulation is realistically capturing both the large-scale as well as the small-scale dynamical features in the South China Sea.
Słowa kluczowe
Czasopismo
Rocznik
Strony
166--176
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
  • Institute for Coastal Research, Helmholtz Zentrum Geesthacht, Geesthacht, Germany
  • Institute for Coastal Research, Helmholtz Zentrum Geesthacht, Geesthacht, Germany
Bibliografia
  • [1] AVISO, 1996. AVISO User Handbook Merged Topex/Poseidon Products (GDR-Ms), AVI-NT-02-101-CN Edn. 3.0, Romonville St-Agne, France, 199 pp.
  • [2] AVISO, 2009. SSALTO/DUACS User Handbook: (M) SLA and (M) ADT Near-real Time and Delayed Time Products, Reference: CLS-DOSNT-06-034, 29 pp.
  • [3] Benestad, R. E., Hanssen-Bauer, I., Chen, D., 2008. Empirical-statistical Downscaling. World Scientific Publishing Company Incorporated, Singapore, 228 pp.
  • [4] Cheng, X. H., Xie, S. P., Du, Y., Wang, J., Chen, X., Wang, J., 2016. Interannual-to-decadal variability and trends of sea level in the South China Sea. Clim. Dyn. 46 (9), 3113—3126, http://dx.doi.org/10.1007/s00382-015-2756-1.
  • [5] Cui, M. C., von Storch, H., Zorita, E., 1995. Coastal sea-level and the large-scale climate state — a downscaling exercise for the Japanese islands. Tellus Ser. A 47 (1), 132—144, http://dx.doi.org/10.1034/j.1600-0870.1995.00008.x.
  • [6] Dale, W. L., 1956. Wind and drift currents in the South China Sea. Malays. J. Trop. Geogr. 8, 1—31.
  • [7] Fang, G. H., Chen, H. Y., Wei, Z. X., Wang, Y. G., Wang, X. Y., Li, C. Y., 2006b. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. J. Geophys. Res. 111 (C11S16), 2156—2202, http://dx.doi.org/10.1029/2005JC003276.
  • [8] Fang, W. D., Guo, J. J., Shi, P., Mao, Q. W., 2006a. Low frequency variability of South China Sea surface circulation from 11 years of satellite altimeter data. Geophys. Res. Lett. C11S16, http://dx.doi.org/10.1029/2006GL027431.
  • [9] Fang, G. H., Wang, G., Fang, Y., Fang, W. D., 2012. A review on the South China Sea western boundary current. Acta Oceanolog. Sin. 31 (5), 1—10, http://dx.doi.org/10.1007/s13131-012-0231-y.
  • [10] Ho, C. R., Zheng, Q. N., Soong, Y. S., Kuo, N. J., Hu, J. H., 2000. Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. J. Geophys. Res. Oceans 105 (C6), 13981—13990, http://dx.doi.org/10.1029/2000JC900001.
  • [11] Hu, J., Kawamura, H., Hong, H., Qi, Y., 2000. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. J. Oceanogr. 56 (6), 607—624, http://dx.doi.org/10.1023/A:1011117531252.
  • [12] IPCC, 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, United Kingdom/New York, USA, 10—11.
  • [13] Kauker, F., von Storch, H., 2000. Statistics of “synoptic circulation weather” in the North Sea as derived from a multiannual OGCM simulation. J. Phys. Oceanogr. 30 (12), 3039—3049, http://dx.doi.org/10.1175/1520-0485(2000)030<3039:SOSCWI>2.0.CO;2.
  • [14] Li, H. M., von Storch, J.S., 2013. On the fluctuating buoyancy fluxes simulated in a 1/10 degrees OGCM. J. Phys. Oceanogr. 43 (7), 1270—1287, http://dx.doi.org/10.1175/JPO-D-12-080.1.
  • [15] Li, L., Xu, J. D., Jing, C. S., Wu, R. S., Guo, X. G., 2003. Annual variation of sea surface height, dynamic topography and circulation in the South China Sea — a TOPEX/Poseidon satellite altimetry study. Sci. China Ser. D 46 (2), 127—138.
  • [16] Schrum, C., Siegismund, F., John, M., 2003. Decadal variations in the stratification and circulation patterns of the North Sea. Are the 1990 unusual? ICES Mar. Sci. Sympos. 121—131.
  • [17] Storto, A., Masina, S., 2014. Validation of the CMCC Global Ocean Eddy-Permitting Reanalysis (C-GLORS). Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy, 11 pp.
  • [18] Storto, A., Masina, S., Navarra, A., 2016. Evaluation of the CMCC eddypermitting global ocean physical reanalysis system (C-GLORS, 1982—2012) and its assimilation components. Q. J. R. Meteorolog. Soc. 142 (695), 738—758, http://dx.doi.org/10.1002/qj.2673.
  • [19] Tim, N., Zorita, E., Hunicke, B., 2015. Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation. Ocean Sci. 11 (3), 483—502, http://dx.doi.org/10.5194/os-11-483-2015.
  • [20] Titus, M. L., Sheng, J., Greatbatch, R. J., Folkins, I., 2013. Improving statistical downscaling of general circulation models. Atmos. Ocean 51 (2), 213—225, http://dx.doi.org/10.1080/07055900.2013.774259.
  • [21] von Storch, H., Reichardt, H., 1997. A scenario of storm surge statistics for the German bight at the expected time of doubled atmospheric carbon dioxide concentration. J. Clim. 10 (10), 2653—2662, http://dx.doi.org/10.1175/1520-0442(1997)010<2653:ASOSSS>2.0.CO;2.
  • [22] von Storch, H., Zwiers, F. W., 1999. Statistical Analysis in Climate Research. Cambridge Univ. Press, 293—305.
  • [23] von Storch, H., Zorita, E., Cubasch, U., 1993. Downscaling of global climate-change estimates to regional scales — an application to Iberian rainfall in wintertime. J. Clim. 6 (6), 1161—1171, http://dx.doi.org/10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2.
  • [24] von Storch, J.-S., Eden, C., Fast, I., Haak, H., Hernández-Deckers, D., Maier-Reimer, E., Marotzke, J., Stammer, D., 2012. An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr. 42 (12), 2185—2205, http://dx.doi.org/10.1175/JPO-D-12-079.1.
  • [25] Wang, Y., Fang, G., Wei, Z., Qiao, F., Chen, H., 2006. Interannual variation of the South China Sea circulation and its relation to El Niño, as seen from a variable grid global ocean model. J. Geophys. Res. 111, C11S14, http://dx.doi.org/10.1029/2005JC003269.
  • [26] Wang, D. X., Zhuang, W., Xie, S. P., Hu, J. Y., Shu, Y. Q., Wu, R. S., 2012. Coastal upwelling in summer 2000 in the northeastern South China Sea. J. Geophys. Res. Oceans 117, C04009, http://dx.doi.org/10.1029/2011JC007465.
  • [27] Wang, D. X., Shu, Y. Q., Xue, H. J., Hu, J. Y., Chen, J., Zhuang, W., Zu, T. T., Xu, J. D., 2014. Relative contributions of local wind and topography to the coastal upwelling intensity in the northern South China Sea. J. Geophys. Res. Oceans 119 (4), 2550—2567, http://dx.doi.org/10.1002/2013JC009172.
  • [28] Wei, Z. X., Fang, G. H., Choi, B. H., Fang, Y., He, Y. J., 2003. Sea surface height and transport stream function of the South China Sea from a variable-grid global ocean circulation model. Sci. China Ser. D 46 (2), 139—148, http://dx.doi.org/10.3969/j.issn.1674-7313.2003.02.005.
  • [29] Wyrtki, K., 1961. Physical Oceanography of the Southeast Asian Waters, Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand, NAGA Rep. 2. Scripps Inst. Oceanogr., La Jolla, CA, 195 pp.
  • [30] Xie, S. P., Xie, Q., Wang, D. X., Liu, W. T., 2003. Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res. Oceans 108, C83261, http://dx.doi.org/10.1029/2003JC001867.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f94aa67d-486a-4db6-8d80-8daea85aff69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.