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1. Introduction 

This paper is completing the paper presented last 
year during SSARS-2012 on the same subject [12].  
The interconnection between networks of different 
types is growing as never. This acceleration of 
interconnectivity of all sorts results in higher 
requirements on network performances. It brings to 
the front scene the issue of assessing the 
performance of networks in design and operation. 
Until very recent, “performance” was used to be 
tackled in terms of “connectivity” which is 
measured using the “probability” of being 
connected.  
But, what “connected” is?  
What is the best measure of this connectivity on 
both levels: node-pairs and overall the network? 
The use of probabilities is a natural choice in order 
to measure the “connectivity”. But, the 
“connectivity” itself does still need deeper 
understanding when it is matter of more than two 
nodes.  

Topological modelling has not been explored 
enough and seems to provide a promising tools to 
develop qualitative and semi- quantitative models 
describing the “connectivity”.  
We do not claim that “connectivity” is the only 
dimension in the space of “network performance”. 
But, it seems unavoidable starting point. 
This paper completes the investigations presented 
in [12]. In the paper, we focus on the development 
of some connectivity measures and their 
applicability rather than on the mathematical nature 
of these objects.  
The proposed model is still in its earliest phase of 
development. But, it sounds very promising.  
The term “performance” would be extended, 
beyond “connectivity”, to “resilience” and to 
“robustness” without excluding other possible 
dimensions, such as: the maximum/optimum flux.  
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Abstract 
 

The acceleration of the interconnectivity of networks of all sorts brings to the front scene the issue of 
networks performance measure. Recently, one observed an accelerating course towards quantitative 
probabilistic models to describe and assess networks’ Connectivity, as being the main vector of 
performance. However, modelling realistic networks is still far from being satisfactorily achieved using 
quantitative probabilistic models.  
On the other hand, little room had been lift to exploring the potential of topological models to develop 
qualitative and semi- quantitative models in order to assess networks connectivity. In this paper, we are 
exploring the potential of the topological modelling. The proposed model is based on describing the node-
pair connectivity using binary scalars of different orders (tensors). Preliminary results of our explorations 
sounded very promoting. 
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2. Description 
 

The paper deals with the “connectivity” as 
classically used in “terminal-pair reliability –TPR” 
problem. Two major types of network topologies 
can be mentioned as well: Point-to-Multipoint 
(PMP) and mesh type networks.  
In the paper, the focus is done on the PMP-like 
modeling. We will not deal with “mesh type” 
networks. Models treating the Mesh Network are 
given in [8] [1]. 
Very often distinction is done between three modes 
of network Connectivity measure, such as: 
 
Two-terminal connectivity  
It measures the ability of the network to satisfy the 
communication needs of a specific pair of nodes. 
Two-terminal availability defines the probability 
that there is at least one available path in the 
network connecting a specified pair of nodes. 
k-terminal connectivity 
It measures the ability of the network to satisfy the 
communication needs of a subset k of specified 
nodes. The k-terminal availability is defined as the 
probability that for k specified target nodes there is 
at least one connecting path between each pair of 
the k nodes, in the network. 
All-terminal connectivity 
It measures the ability of the network to satisfy the 
communication needs of all nodes in the network. 
All-terminal availability determines the probability 
that there is at least one path connecting each pair 
of nodes in the network 
Some reliability models for the PMP are given in 
[2], [11], [17], [20], [21]  
The most common manner to represent networks is 
to use graphs theory notations. A graph ),( EVG =  

is a well-defined set of vertices (nodes), V , and 
edges (links), E .  
The performance of each node and each link is 
defined by a failure probability or a failure rate. 
These failure figures are functions of the used 
materials, technology, operational conditions and 
network’s topology. 
Three links-failure modes are generally identified 
such as: path loss, shadowing and signal fading, [6]. 
These are the failure modes recognized by the IEEE 
802.16 WG for communication networks. That 
could be extended to the PMP networks as well. 
Exponential models (Poisson’s stochastic process) 
are often proposed [6], to describe failures 
occurrence. 

Often, some authors confuse “Reliability” and 
“Availability” concepts, e.g. [10]. 
Some others, [15] recalls: “... Network reliability 
refers to the reliability of the overall network to 
provide communication in the event of a failure of a 
component in the network, and it depends on the 
sustainability of both hardware and software.”  
I, myself, would call that aptitude “Network 
Availability”. The concept “Reliability” can’t 
subsist without referencing to “time duration”.  
The Connectivity between a source node and a 
receptor node could thus be measured by: the 
availability of at least a path from one node to the 
other, ( ts− model). This is a very necessary 
measure that we can (/should) determine for each 
couple of nodes. Still, it is not yet a network 
OVERALL measure. It is a local one!  
 
We have three problems to overcome: 
1st: the Order of the Connecting path  
A robust modelling (topological or analytical) 
should be able to integrate the order of the 
connecting path between any pairs of nodes. The 
order of the path defines how many edges (/links) 
exist between the source node and the receptor one.  
 
2nd: the Multiplicity of the Connecting Paths 
A robust modelling (topological or analytical) 
should be able to integrate the number of the 
connecting paths between any pairs of nodes. The 
multiplicity of the connecting paths determines how 
many connecting paths exist between a given 
source node and a given receptor one, whatever are 
their orders.  
 
3rd: the Overall Network Connectivity 
A robust modelling (topological or analytical) 
should be able to develop a measure of the network 
overall connectivity. The network overall 
connectivity may be determined for each 
connectivity order, i.e. in a spectral way.  
 
Identifying clearly the fundamental problems would 
guide us towards the right directions.  
We recall that we are interested in exploring the 
potential of the topological modelling to describe 
connectivity.  
 
3. Overview on the state-of-the-art 
 

Although it is not the principal issue of the paper, 
this selective overview of the state-of-the-art would 
serve as a referential background to our work. 
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We start by the network Connectivity metric, )(tC , 
as in [15], such as: 
 

   )(tC  = 
M

tNcon )(
, 

 
where, 
 

)(tN
con

: is the number of connected node-pairs at 

time t , whatever the order of the connecting path 
of each node-pair. 
M  : is the total number of node-pairs in the 
network 
For a network containing N  nodes, the total 
number of node-pairs in the network M  is equal 
to: 
 

   M  = 
( )

2

1−NN
. 

 
Mandiratta, [15], proposed a model to determine 
the network connectivity, based on a given minimal 
Connectivity condition. In that model, n  is the 
minimal acceptable number of connecting nodes in 
a network containing N  nodes. The network 
connectivity, under this minimal connectivity 
condition, will be measured such that: 
 

   );:( CNnP  = ( )∑
=

−N

nj

jNjN
j qp ,   1>n  

where, 
 

);:( CNnP : The probability that the network is 

available (/connecting) (at least n  nodes out of N  
are available). 
( )N

j  : The number of possible combinations. The 

number of possible sets containing j  nodes 

available out of N . 
p  : The probability that a given node is available 

(connected) 
q  : The probability that a given node is unavailable 
(disconnected) 
 
This constrained unavailability (at least n  nodes 
are connected, 1>n ) could be one measure of the 
network connectivity.  
Is it really enough? 
Would engineers accept having at least n  nodes 
connected out of N , 1>n , without knowing more 
about the of the network overall connectivity? 

Regarding some critics that the above expression, 
recognized by Mandiratta [15], does not describe a 
coherent system, our answer is that the expression 
itself (the sum) describes a coherent system. But 
each term in the sum does not.  
Indeed the term jNj qp −  is not monotone with p  
neither with j . It has a maximum when: 
 

   p  = 
N

j
 

 
But the sum of all these terms is monotone. In 
Figure 1, the availability of a network made of 10 
nodes is given as a function of both the node 
unavailability and the minimum number of 
available nodes, (according to Mandiratta [15]). 
The Nodes are supposed identical.  
 

 
 

Figure 1. Network availability versus node 
unavailability as a function of the minimum number 
of available nodes out of 10 
 
It is obvious that the network availability 
(according to Mandiratta[15]) is monotone and the 
model describes a coherent system.  
Many works have been carried on in order to 
develop algorithms based on the previous model, 
[3]. 
Besides, most of the researchers, working on the 
determination of the network availability, treat the 
problem as consecutive k-out-of-N failure (K:N;F) 
problem, e.g. [14]. 
The only objective remark I would formulate about 
the model of Mandiratta is that links unavailability 
are not explicitly integrated in the model. It looks 
as if it considers only nodes failures.  
Very often in network connectivity, the following 
assumptions are considered: 
• Nodes are completely reliable; only links fail. 

(failure rates of nodes are by so far smaller than 
the link failure ones). 
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• Link failures (nodes as well) are independently 
random events, [4], [18]. 

• Sometimes link failures are supposed equally 
probable. This assumption is often made 
because no detailed information about link 
failures is available, whereas information about 
the average failure is available, [9]  

Significant R&D efforts are devoted to the 
development of numerical algorithms in order to 
determine the probability that a given network may 
have a determined level of connectivity, [2], [4], 
[7], [11], [13], [15], [17]. 
 
Most of the researchers called this probability 
“Reliability” of consecutive K-out-of-N system. 
Recently, this has been evolved to a  
k-within consecutive- sr × -out-of- Fnm :×  
system, [14]. This is a generalisation of the problem 
of consecutive k-ou-of-N failures.  
The network availability is generally determined 
either analytically or numerically. Analytical 
schemes are limited by the size and the topological 
complexity of the network. For large and complex 
network numerical methods such as: Mont-Carlo 
simulation, neural-network models, or genetic 
algorithms are developed. 
Some interesting applications are given in [16], 
[19]. 
Another major task in network design is to optimize 
network reliability (connectivity, performance, 
resilience, …) versus cost.  
Still, we should first be able to determine and to 
measure the connectivity.  
Three classic meta-heuristic procedures are often 
recognized for solving large and realistic designs: 
steepest descent, simulated annealing and genetic 
algorithms. These procedures are clearly described 
and compared in [4], with an interesting list of 
corresponding references.  
Three sets of difficulties are generally reported. The 
1st is related to failure data availability. The second 
is relative to the combinatorial aspect of the 
problem. The 3rd arises from the interdependence 
between different failure paths (cut-sets). 
 
4. The topological model 
 

Networks may be represented using graphs. A 
graph ),( EVG =  is a well-defined set of vertices 

(nodes), V , and edges (links), E . 
A network is a graph containing at least 3 nodes, 

3≥N . 

We are looking for constructing a connectivity 
measure dependant on the number of links 
necessary to link two nodes (order) in a given 
network.  

The proposed connectivity measure 
n

ij
C  is a 

(binary) scalar (tensor) of order n  describes the 
connecting state between two independent nodes i  
and j  in a given network, such that: it takes the 
value 1 if the two nodes are connected, otherwise it 
takes the value 0. The order n  refers to the number 
of links connecting the two nodes.  

The 
1

il
C  will be called the network identity tensor. 

It describes the 1st order connecting state between 
all the nodes, i.e., it determines the couples of 
nodes that are directly connected. In a certain way, 
it describes the topology of the network and 
contains all the information we need to know about 
the connectivity state of the network.  
Some measures will be developed and will show of 
some interest to assess the connectivity. 
 
Connectivity binary measure 

A connectivity binary measure, 
1+n

ij
C , is determined 

by the following recursive relation: 
 

   1+n
ijT  = 1

ilC .
n

lj
T , and 10 =ljT    ],1[,, Njli ∈  

 
   )( 11 ++ n

ij
n
ij TC  = 1, if 01 >∀ +n

ijT ,  

 

otherwise, )(
11 ++ n

ij

n

ij
TC  = 0 

 
where, 

1

il
C  : is the network identity tensor. 

1+n

ij
T  : is the total number of cuts of order less than 

or equal to 1+n , connecting two nodes ),( ji . 

N  : is the total number of nodes in the network. 
We would constrain only to the treatment of the 

links by switching (:)
1+n

ii
C  as follows: 

 
   (:)1+n

iiC = 0,  ],1[ Ni ∈∀  
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Number of Links 
The total number of links 

N
L  in a given network 

can be determined using the network identity tensor 
1

ij
C  as following: 

N
L  = ∑∑

= =

N

i

N

ij
ijC

1

1  

 
Connectivity Indicator and Connectivity Ratio  

The tensor 
n

ij
T  allows determining the number of 

baths of order n  that join the node-pair ( ji, ).  
For each node, one would determine a connectivity 

indicator, 
n

i
I , and a connectivity ratio, 

n

i
R , of a 

given order, such that: 
 

   
n

i
I  = 








∑
=

N

j

n
ijC

1
, and  

n

i
R  = 

)1( −N

I n
i  

 
Notice the slight difference with [12] because of the 
fact that we consider only the failure of links.  
 
Overall Connectivity Indicator and Overall 
Connectivity Ratio  
Based on all nodes’ connectivity indicator, one can 
define a network overall connectivity indicator, 

n

overall
I , and connectivity ratio, 

n

overall
R , of a given 

order, such that: 
 

   n
overallI  = ∑

=

N

j

n
iI

1
, and n

overallR  = 
N

R
N

i

n
i∑

=1  

 
At last, one may define the network highest order, 

∞
n , such that, this is the minimum necessary order 

of cut-sets (links) so that all nodes may become 
mutually connected. That is can be described as 
following: 
 
   

∞
n  = [ ]( )NjiCnMin n

ij ,1,,1;. ∈∀=  

 
Spectral Connectivity Index  

The spectral connectivity index 
n

ij
θ  is a binary 

scalar whose value determines the minimal 
connectivity order for the node-pair (ji, ). It is 
defined as following: 
 

   1+n
ijθ  = 1,   if ∑ >−

=

+ n

l

l
ij

n
ij CC

1

1 0)(  

 

Otherwise, 
1+n

ij
θ  = 0.  

 
It can been demonstrated that:  
 
   0=∞≥nn

ijθ ;   ],1[, Nji ∈∀  

 
Spectral Distribution  

The spectral distribution 
n

i
ν  determines the number 

of the minimal order paths connecting the node (i ) 
to the network. It is given by: 
 

   n
iν  = ∑

=

N

j

n
ij

1
θ  

 
Obviously, 
 

   ∑
∞

=

n

n

n
i

1
ν  = 1−N ,   ],1[ Ni ∈∀  

 
Recalling that: 
 
   ∞n  = [ ]( )NjiCnMin n

ij ,1,,1;. ∈∀=  

 
5. Study case 
 

In order to demonstrate the interest of the different 
measures, developed above, a study case is used to 
illustrate their interest. The studied network is 
schematically presented in figure 2. 
It describes a network composed of 20 nodes and 
30 links, exported from [4]. Each node is connected 
to 3 other nodes. That is one of the most widely 
used PMP type of connectivity in networks design 
[2], [11], [20], [21]. 
 

 
Figure .2. Schematic presentation of NET-I [5] 
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Network identity tensor  
Examining the presentation given in Fig.2, one may 

deduce the identity matrix 
1

ij
C  expression in the 

following manner: 
 

1

ij
C  is equal to 1, for the following ( )ji , : 

( )2,1 , ( )3,1 , ( )7,1 , ( )1,2 , ( )4,2 , ( )8,2 , ( )1,3 , ( )5,3 ,

( )7,3 , ( )2,4 , ( )8,4 , ( )9,4 , ( )3,5 , ( )6,5 , ( )7,5 ,

( )5,6 , ( )11,6 , ( )12,6 , ( )1,7 , ( )3,7 , ( )5,7 , ( )2,8 ,

( )4,8 , ( )10,8 , ( )4,9 , ( )10,9 , ( )16,9 , ( )8,10 ,

( )9,10 , ( )15,10 , ( )6,11 , ( )12,11 , ( )14,11 , ( )6,12 ,

( )11,12 , ( )13,12 , ( )12,13 , ( )19,13 , ( )20,13 ,

( )11,14 , ( )15,14 , ( )20,14 , ( )10,15 , ( )14,15 ,

( )17,15 , ( )9,16 , ( )17,16 , ( )19,16 , ( )15,17 , 

( )16,17 , ( )18,17 , ( )17,18 , ( )19,18 , ( )20,18 ,

( )13,19 , ( )16,19 , ( )13,19 , ( )18,19 , ( )13,20 ,

( )14,20 , ( )18,20   
 

Otherwise 
1

ij
C  is equal to 0. 

 
Number of Links  
To recall that the total number of links 

N
L  is 

determined as following: 
 

   
N

L  = ∑∑
= =

N

i

N

ij
ijC

1

1 . 

 
Using the data given above, we may determine that: 
 
   

N
L  = 30. 

 
Connectivity Indicator and Connectivity Ratio  
One recalls that or each node, one would determine 

a connectivity indicator, 
n

i
I , and a connectivity 

ratio, 
n

i
R , of a given order, such that: 

 

   n
iI  = 








∑
=

N

j

n
ijC

1
,   and n

iR  = 
)1( −N

I n
i . 

 

The connectivity indicator, n
iI , and a connectivity 

ratio, n
iR , have already been treated and 

determined previously in [12]. 

Overall Connectivity Indicator and Overall 
Connectivity Ratio  
As mention in the preceding section, both the 

network overall connectivity indicator, 
n

overall
I , and 

connectivity ratio, 
n

overall
R , of a given order have 

already been fully determined in [12]. 
 
The Network highest order 
The highest order, 

∞
n , of the network is found to 

be equal to:  
∞

n  = 6 

 
Spectral Connectivity Index  

Recalling that the spectral connectivity index 
n

ij
θ  

has previously been defined as following: 
 

   
1+n

ij
θ  = 1,    if ∑ >−

=

+ n

l

l
ij

n
ij CC

1

1 0)(   

 
Otherwise, 1+n

ijθ  = 0.  

The spectral connectivity indices 
n

ij
θ  are given in 

Tables 1 to 6.  
 
Spectral Distribution  

One recalls that the spectral distribution 
n

i
ν  is 

given by: 
 

   
n

i
ν  = ∑

=

N

j

n
ij

1
θ  

 

The values of the spectral distribution 
n

i
ν  are given 

in table (7). We can equally verify that: 
 

   ∑
=

6

1n

n
iν  = 120−  = 19   ],1[ Ni ∈∀  

 
6. Transitions 
 

We would like, in this section, to distinguish 
between the two types of transitions that this 
topological model allows us to distinguish: the 
critical transitions and the degradation transition. 
 
Critical Transition 

If all the 
n

i
ν  paths, at a given order n , fail as a 

result of the failure of only one link somewhere in 
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the network, the node (i ) may still be connected 
but with paths of higher order than n . This 
transition in the connectivity of the node (i ) to a 
higher order because of the failure of only one link 
is called a “critical transition”. Critical transitions 
produce failures.  
We call that a node connectivity failure of order n .  
Critical transitions are immediately determined 
thanks to the binary values of the spectral 

connectivity index 
n

ij
θ . 

 
Degradation Transition 

If at maximum, )1( −n

i
ν  paths, at a given order n , 

fail as a result of the failure of only one link 
somewhere in the network, the node (i ) may still 
be connected by at least one bath of order n . 
We call that a node connectivity degradation of 
order n .  
 
7. Loss of connectivity probability 
 

We will focus here on the case of the failure of only 
one link. We will not be interested in the exact 
failure probability distribution of the links.  
It could be exponential or be another distribution 
function. In all cases, we suppose that the failure 
probability distribution function of the link is well 
defined and is identical for all links. 
The number of the minimal order paths connecting 
a node (i ) to the network is n

iν . Losing all these 
connecting paths is a critical transition.  
Subsequently, The node (i ) losses connectivity if 
all these minimal paths of all orders are lost.  
The probability that node (i ) loses its connectivity 
with the network, )(tQi , is determined by: 
 

   )(tQi  = ∑ ⋅
∞

=

n

n

n
i

n
i tQ

1
)(ν  

 
where, 
 

   )(tQn
i  = )(1

1
))(1()))(1()(( nNLl

n

l
tqtqtq −−

=
−⋅∑ −⋅  

 
and 

n
iν  : is the number of the minimal order paths. 

)(tQn
i  : the probability that only one link fails in a 

path of order n . 
)(tq  : The probability that a given link is 

unavailable 
 

8. Conclusion 
 

The paper presents a topological model of 
describing networks connectivity and extends the 
model to describe transitions. 
Compared to the paper [12], the major 
achievements in the paper are the development of 
the Spectral Connectivity Index and the Spectral 
Distribution.  
Describing the connectivity in terms of binary 
tensors allows assessing the connectivity of each 
node to the network. It allows also distinguishing 
between the critical transitions and the others 
(degradation transitions). Once the critical 
transitions are determined, one may assess the 
connectivity of a node with its network in 
probabilistic terms (availability)  
More development is underway to describe the 
transitions and to contribute into the definitions of 
overall failure probabilities or overall failure rates. 
 
References 
 

[1] AboElFotoh, H.M. & Colbourn, C.J. (1989). 
Computing 2-terminal reliability for radio-
broadcast networks. IEEE Transactions on 
Reliability, 38(5), 538-555. 

[2] Agrawal, A. & Satyanarayana, A. (1984). An 
O(|E|) Time Algorithm for Computing the 
Reliability of a Class of Directed Networks. 
Operations Research, 32(3), 493-515. 

[3] Agarwal, M., Sen, K. & Mohan, P. 
(2007). GERT Analysis of m-Consecutive-k-
out-of-n Systems. IEEE Transactions on 
Reliability, Vol. 56, No 1. 

[4] Altiparmak, F. & Dengiz, B. (2004). Optimal 
Design of Reliable Computer Networks: A 
Comparison of Metaheuristics. Journal of 
Heuristics, 9: 471–487.  

[5] Altiparmak, F. et al. (2009). A General Neural 
Network Model for Estimating 
Telecommunications Network Reliability. IEEE 
Transactions on reliability Vol. 58, No. 1. 

[6] Ball, M.O, Colbourn, C.J., & Provan, J.S. 
(1992). Network reliability. Network Models, 7, 
673-762. 

[7] Cancela, H. & Khadiri, M.E. (2003). The 
Recursive Variance-Reduction Simulation 
Algorithm for Network Reliability Evaluation. 
IEEE Transactions on Reliability, Vol. 52, No 2. 

[8] Chen, X. & Lyu, M.R. (2005). Reliability 
analysis for various communication schemes in 
wireless CORBA. IEEE Transactions on 
Reliabiity, 54(2), 232-242. 



Eid Mohamed, El Hami Abdelkhalak, Souza de Cursi Eduardo, 
Towards the development of topological performance Models to assess networks connectivity, 

 robustness and reliability 
 

 174

[9] Colbourn, C.J. & Harms, D.D. (1988). Bounding 
all-terminal reliability in computer networks. 
Networks, Vol. 18, 1–12. 

[10] Dominiak, S., Bayer, N., Habermann, J., 
Rakocevic, V. & Xu, B. (2007). Reliability 
Analysis of IEEE 802.16 Mesh. Proc. 2nd IEEE-
IFIP International Workshop on Broadband 
Convergence Networks, Vol. 16, 1-12. 

[11] Dotson, W. & Gobien, J. (1979). A new analysis 
technique for probabilistic graphs. Circuits and 
Systems, IEEE Transactions on Reliability, 
26(10):855-865. 

[12] Eid, M., Souza de Cursi E. & El Hami, A. 
(2012). Towards the development of a 
topological model to assess networks 
performance: Connectivity, robustness and 
reliability. Journal of Polish Safety & Reliability 
Association, Vol. 3, No 1, 23-37. 

[13] El Khadiri, M. & Rubino, G. (1992). A Monte-
Carlo Methode Based on Antithetic Variates for 
Network Rreliability Computations. Unite de 
Recherche INRIA-Rennes, rapport de recherche 
n° 1609, Février 1992. 

[14] Huang Tzu-Hui. (2003). The exact reliability of 
a 2-dimentional k-within rxs-out-of-mxn:F 
system: A finite Markov approach. Thesis 
presented at the National University Kaohsiung, 
Taiwan, 2003. Supervised by Yung-Ming 
Chang, Dept. of Mathematics, National Taitung 
University. 

[15] Mendiratta, V.B. (2002).  A Simple ATM 
Backbone Network Reliability Model. An 
IMA/MCIM Joint Seminar in Applied 
Mathematics, Minnesota Center for Industrial 
Mathematics, University of Minnesota. 

[16] Ramirez-Marquez, J.E. & Coit, D.W. & 
Tortorella,    M.     A    Generalized    Multistate  

   Based        Path       Vector       Approach      for    
Multistate Two - Terminal Reliability. 
http://ie.rutgers.edu/resource/research_paper/pape
r_05-001.pdf 

[17] Torrieri, D. (1994). Calculation of node-pair 
reliability in large networks with unreliable 
nodes. IEEE Transactions on Reliability, 43(3), 
375-377. 

[18] Van Slyke, R.M. & Frank, H. (1972). Network 
reliability analysis I. Networks, Vol. 1, 279–290. 

[19] Watcharasitthiwat, K., Pothiya, S. & Wardkein, 
P. Multiple Tabu Search Algorithm for Solving 
the Topology Network Design. Open Access 
Database www.i-techonline.com 

[20] Yeh, F.M., Lin H.Y. & Kuo, S.Y. (2002). 
Analyzing network reliability with imperfect 
nodes using OBDD. Dependable Computing, 
2002. Proc. Paci¯ c Rim International 
Symposium 89-96. 

[21] Yo, Y.B. (1988). A Comparison of Algorithms 
for Terminal-Pair Reliability. IEEE Transactions 
on Reliability, 37(2). 

 
 

Table 1. The Spectral Connectivity Indices and Spectral Distributions associated to the network NET-I 
 

1=n  
 

1

ij
θ  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

7 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

10 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 

12 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 
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15 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 

16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 

1

i
ν  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

 
Table 2. the Spectral Connectivity Indices and Spectral Distributions associated to the network NET-I 

 

2=n  
 

2

ij
θ  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

5 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

6 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 

7 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 

9 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 

10 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 

11 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 

12 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 

13 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 

14 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 

15 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 1 

16 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 

17 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 

18 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

19 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 

20 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 

2

i
ν  3 4 2 3 3 4 2 3 5 5 4 4 5 6 6 5 5 4 4 5 
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Table 3. the Spectral Connectivity Indices and Spectral Distributions associated to the network NET-I 
 

3=n  
 

3

ij
θ  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

3 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 

5 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 

6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 

7 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 

8 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 

9 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 

10 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 

11 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 

12 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 

13 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 

14 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 

15 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 

16 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 

17 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

19 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 

20 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

3

i
ν  3 3 4 5 3 4 4 5 4 5 6 5 4 5 6 5 4 4 6 3 

 
Table 4. the Spectral Connectivity Indices and Spectral Distributions associated to the network NET-I 

 

4=n  
 

4

ij
θ  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 

3 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 

4 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 

5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 

6 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 

7 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 

8 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 

9 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 

10 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 

11 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 

12 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 

13 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
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14 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

17 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

18 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

4

i
ν  4 4 4 4 5 5 4 5 5 5 4 4 4 4 2 3 3 3 3 3 

 
Table 5. the Spectral Connectivity Indices and Spectral Distributions associated to the network NET-I 

 

5=n  
 

5

ij
θ  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 

2 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 

4 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 

5 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 

6 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 

8 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

9 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

13 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

5

i
ν  4 5 4 4 5 3 4 3 2 1 2 3 3 1 2 3 2 2 3 4 
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Table 6. the Spectral Connectivity Indices and Spectral Distributions associated to the network NET-I 
 

6=n  
 

6

ij
θ  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6

i
ν  2 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 2 3 0 1 

 
 
Table 7. Spectral Distributions associated to the network NET-I 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1

i
ν  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

2

i
ν  3 4 2 3 3 4 2 3 5 5 4 4 5 6 6 5 5 4 4 5 

3

i
ν  3 3 4 5 3 4 4 5 4 5 6 5 4 5 6 5 4 4 6 3 

4

i
ν  4 4 4 4 5 5 4 5 5 5 4 4 4 4 2 3 3 3 3 3 

5

i
ν  4 5 4 4 5 3 4 3 2 1 2 3 3 1 2 3 2 2 3 4 

6

i
ν  2 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 2 3 0 1 

 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 

 


