PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Austempering Process on the Microstructure and Mechanical Properties of 27MnCrB5-2 Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of austempering parameters on the microstructure and mechanical properties of 27MnCrB5-2 steel has been investigated by means of: dilatometric, microstructural and fractographic analyses; tensile and Charpy V-notch (CVN) impact tests at room temperature and a low temperature. Microstructural analyses showed that upper bainite developed at a higher austempering temperature, while a mixed bainiticmartensitic microstructure formed at lower temperatures, with a different amount of bainite and martensite and a different size of bainite sheaf depending on the temperature. Tensile tests highlighted superior yield and tensile strengths (≈30%) for the mixed microstructure, with respect to both fully bainitic and Q&T microstructures, with only a low reduction in elongation to failure (≈10%). Impact tests confirmed that mixed microstructures have higher impact properties, at both room temperature and a low temperature.
Twórcy
autor
  • Department of Industrial Engineering – University of Bologna, Italy
autor
  • Department of Industrial Engineering – University of Bologna, Italy
  • Department of Industrial Engineering – University of Trento, Italy
autor
  • Department of Industrial Engineering – University of Trento, Italy
autor
  • Zanardi Fonderie, Minerbe Vr, Italy
autor
  • Department of Industrial Engineering – University of Trento, Italy
Bibliografia
  • [1] H.K.D.L. Bhadeshia: Bainite in Steels: Transformation, Microstructure and Properties, 2001, IOM Communications Ltd., London.
  • [2] J. Tartaglia, K. Lazzari, G. Hui , K. Hayrynen: Met. Trans. A 9A, 559-576 (2008).
  • [3] Kangying Zhua Mat. Sci. Eng. A 57, 6614-6619 (2010).
  • [4] K. Abbaszadeh, H. Saghafian, S. Kheirandish, Sci. Technol. 28 (4), 336-342 (2012).
  • [5] Y. Tomita: Metall. Mater. rans. A, 4, 2387-2393 (1983).
  • [6] L. Rancel, M. Gmez, S. F. Medina, I. Gutierrez, Mat. Sci. Eng. A 30, 21-27 (2011).
  • [7] A. Di Schino, C. Guarnaschelli, Mater. Lett. 3, 1968-1972 (2009).
  • [8] ASTM E3-01, Standard Practice for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2001.
  • [9] ASTM E18-16, Standard Test Methods for Rockwell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2016.
  • [10] ASTM E92-16, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2016.
  • [11] ASTM E8 / E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2015.
  • [12] ASTM E23-12c, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohockn, PA, 2012.
  • [13] J. Pacyna, Arch Metall Mater 59 (4), 1679-1683 (2014).
  • [14] J. Nohava, P. Hausild, M. Karlik, P. Bompard, Mater. Charact. 49, 211-217 (2002)
  • [15] C.H. Young, H.K.D.L Bhadeshia, Mater. Sci. Technol. 10, 209-214 (1994.
  • [16] www.keytometals.com
  • [17] H. Song, C.M. Li, L. Lan, D. Zhao, J. Iron Steeles Int. 2 (8), 72-77 (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f943573b-59cf-4881-bd93-be4e6b470986
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.