PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trwałość betonu a współczynnik k

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Concrete durability and the k-value concept
Języki publikacji
PL EN
Abstrakty
PL
W artykule przeprowadzono krytyczne omówienie wielkości współczynnika k zawartego w normach. Jest on dostosowany jedynie do wytrzymałości betonu, podczas gdy zdaniem autorów powinien również uwzględnić odporność betonu na różne formy korozji. Nie jest to praktycznie możliwe i z tego względu autorzy proponują stosowanie sprawdzonych modeli, które pozwalają na ocenę trwałości betonu w różnych przypadkach i na oszacowanie czasu zachowywania przez beton założonego w projekcie okresu eksploatacji.
EN
In the paper the importance of the so called k-value was discussed. Now it is applied only for assessing the concrete strength and according to the authors it should concern also the resistant of this composite to different aggressive media attack. It is not possible practically therefore authors propose the application of proven models, which give the possibility for the concrete durability assessing in different environments and its service life, maintaining in the design assumed time.
Czasopismo
Rocznik
Strony
81--92
Opis fizyczny
Bibliogr. 32 poz., il., tab.
Twórcy
autor
  • Brno University of Technology, Faculty of Civil Engineering, Brno
  • Brno University of Technology, Faculty of Civil Engineering, Brno
autor
  • Brno University of Technology, Faculty of Civil Engineering, Brno
  • University of Natural Resources and Life Sciences, Institute of Structural Engineering, Vienna
autor
  • University of Natural Resources and Life Sciences, Institute of Structural Engineering, Vienna
Bibliografia
  • 1. ISO 16204: Durability – Service life design of concrete structures. ISO, 2012.
  • 2. fib Final Draft Model Code 2010. fib Bulletins No. 65 and 66. International Federation for Structural Concrete, Lausanne, Switzerland. 2012.
  • 3. G. Habert, A method for allocation according to the economic behavior in the EU-ETS for by-products used in cement industry. Int. J. Life Cycle Assess. Published on-line: 06 July 2012. doi: 10.1007/s11367-012-0464-1.
  • 4. EN 206-1: Concrete – Part 1: Specification, performance, production and conformity. European Standard. 2000.
  • 5. EN 197-1: Cement - Composition, specifications and conformity criteria – Part 1: Common cements. European Standard. 1992.
  • 6. FprEN 206: Concrete – Specification, performance, production and conformity. Final Draft European Standard. 2013.
  • 7. J. Bickley, R. D. Hooton, K. C. Hover, Preparation of a Performance-based Specification for Cast-in-Place Concrete: a) Phase I (2006); b) Phase II (2008), P2P Initiative, RMC Research & Education Foundation, Silver Spring, USA.
  • 8. V. Baroghel-Bouny, T. Q. Nguyen, P. Dangla, Assessment and prediction of RC structure service life by means of durability indicators and physical/chemical models. Cem. Concr. Comp., 31, 522–534 (2009).
  • 9. I. A. Smith, The design of fly-ash concretes. Proceedings of the Institution of Civil Engineers, 36, 769-790 (1967).
  • 10. CEN/TC 104/SC 1 N 717: Use of k-value concept, equivalent concrete performance concept and equivalent performance of combinations concept. CEN Technical report, TG5-170, October 26th 2011.
  • 11. ISO 13823: General Principles on the Design of Structures for Durability. 2008.
  • 12. V. G. Papadakis, Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem. Concr. Res., 30, 291–299 (2000).
  • 13. V. G. Papadakis, S. Tsimas, Supplementary cementing materials Part I: efficiency and design in concrete. Cem. Concr. Res., 32, 1525–1532 (2002).
  • 14. V. G. Papadakis, Efficiency factors (k-values) for supplementary cementing materials regarding carbonation and chloride penetration. Proc. of Fifth Int. Conf. on Durability of Concrete, CANMET/ACI, ed. V.M. Malhotra, Vol. I, 173-187, Barcelona, Spain 2000.
  • 15. A. Bentur, D. Mitchell, Material performance lessons. Cem. Concr. Res., 38, 259-272 (2008).
  • 16. A. Bentur, Impact of additions: indicators for durability and strength performance. International RILEM Workshop on Performance Based Evaluation and Indicators for Concrete Durability, 19-21 March 2006, Madrid, Spain; Proc. edit by V. Baroghel-Bouny et al., 297-309, RILEM Publication 2007.
  • 17. K. G. Babu, S. N. Rao, Efficiency of fly ash in concrete with age. Cem. Concr. Res., 26, 3, 465–474 (1996).
  • 18. D. W. Hobbs, Carbonation of concrete containing PFA. Magazine of Concrete Research, 46, 166, 35-38 (1994).
  • 19. V. Bilek, Development of concrete with ternary binders, Proc. of 12th Int. CANMET Conf. on recent advances in concrete technology and sustainability issues, Supplementary papers, Prague, Czech Rep., 547-562 (2012).
  • 20. M. Chromá, F. Pernica, B. Teplý, Blended cements, durability and reliability of concrete structures. Proc. 2nd International Symposium Non-Traditional Cement and Concrete, 216-223 Brno, Czech Republic 2005.
  • 21. M. Chromá, P. Rovnaník, B. Teplý, Carbonation Modeling and reliability analysis of RC structures made from blended cements. International RILEM Workshop on Performance Based Evaluation and Indicators for Concrete Durability, 19-21 March 2006, Madrid, Spain; Proc. edit by V. Baroghel-Bouny et al., 319-325, RILEM Publication 2007.
  • 22. R. Härdtl, The k-value concept applied for GGBFS – principles and experiences. Internat. RILEM Confer. On Mater. Sci. – MATSCI, – Vol. III, 189-198, Aachen 2010.
  • 23. E. Gruyaert, N. Maes, N. De Belie, Performance of BFS concrete: k-Value concept versus equivalent performance concept. Constr. Build. Mat., 47, 441-455, Elsevier 2013.
  • 24. P. K. Mehta, Durability– Critical Issues for the Future. Concrete International, 27-33 (1997).
  • 25. B. Teplý, M. Chromá, P. Rovnaník, Durability assessment of concrete structures: reinforcement depassivation due to carbonation. Structure and Infrastructure Engineering, 6, 3, 317-327, June 2010.
  • 26. D. Novák, M. Vořechovský, B. Teplý, FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation Module. Advances in Engineering Software (2013), http://dx.doi.org/10.1016/j.advengsoft.2013.06.011.
  • 27. B. Teplý, M. Chromá, P. Rovnaník, D. Novák, Role of modeling in probabilistic durability assessment of concrete structures. CD-ROM, Proc., Life-Cycle and Sustainability of Civil Infrastructure Systems, 2012, edit. A. Strauss, D. M. Frangopol, K. Bergmeister, International Association for Life-Cycle Engineering, CRC Press, Taylor & Francis Group.
  • 28. V. G. Papadakis, M. P. Efstathiou, Computer modeling of concrete service life. In Cement Combinations for Durable Concrete, edited by R. K. Dhir, 777–786, Thomas Telford: London 2005.
  • 29. L. Jiang, B. Lin, Y. Cai, A model for predicting carbonation of high-volume fly ash concrete. Cem. Concr. Res., 30, 699-702 (2000).
  • 30. A. Wang, Ch. Zhang, W. Sun, Fly ash effects II. The active effect of fly ash. Cem. Concr. Res., 34, 2057-2060 (2004).
  • 31. A. Strauss, K. Bergmeister, D. Novák, D. Lehký, Probabilistic response identification and monitoring of concrete structures [Stochastische Parameteridentifikation bei Konstruktionsbeton für die Betonerhaltung] Beton- und Stahlbetonbau, 99, 12, 967-974 (2004).
  • 32. R. Wendner, A. Strauss, T. Guggenberger, K. Bergmeister, B. Teplý, Approach for the assessment of concrete structures subjected to chloride induced deterioration [Ansatz zur beurteilung von chloridbelasteten stahlbetonbauwerken mit bewertung der restlebensdauer], Beton- und Stahlbetonbau, 12, 105, 778-786 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f94123a4-68b6-4bfc-b975-a3caafea54f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.