PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of diffusion and internal heat source on a two-temperature thermoelastic medium with three-phase-lag model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to depict the effect of diffusion and internal heat source on a two-temperature magneto-thermoelastic medium. The effect of magnetic field on two-temperature thermoelastic medium within the three-phase-lag model and Green-Naghdi theory without energy dissipation i discussed. The analytical method used to obtain the formula of the physical quantities is the normal mode analysis. Numerical results for the field quantities given in the physical domain are illustrated on the graphs. Comparisons are made with results of the two models with and without diffusion as well as the internal heat source and in the absence and presence of a magnetic field.
Rocznik
Strony
15--39
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Mathematics Dept. Zagazig University, Egypt
autor
  • Mathematics Dept. Zagazig University, Egypt
Bibliografia
  • [1] Mehrer H.: Diffusion in Solids. Springer-Verlag. Berlin-Heidelberg 2007.
  • [2] Oriani R.A.: Thermomigration in solid metals. J. Phys. Chem. 30(1969), 339–351.
  • [3] Fryxel R.E., Aitken E.A.: High temperature studies of uranium in a thermal gradient. J. Nucl. Mater. 30(1969), 50–56.
  • [4] Nowacki W.: Dynamical problems of thermodiffusion in Solids–I. Bull Pol. Acad. Sci. Tech. 22(1974), 55–64.
  • [5] Nowacki W.: Dynamical problems of thermodiffusion in Solids–II. Bull Pol. Acad Sci. Tech. 22 (1974), 129–135.
  • [6] Nowacki W.: Dynamical problems of thermodiffusion in Solids–III. Bull Pol. Acad. Sci. Tech. 22(1974), 275–276.
  • [7] Nowacki W.: Dynamical problems of thermodiffusion in solids. Proc. Vib. Prob. 15(1974), 105–128.
  • [8] Sherief H.H., Saleh H.A., Hamza F.A.: Theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42(2004), 591–608.
  • [9] Othman M.I.A., Atwa S.Y., Farouk R.: The effect of diffusion on two- dimensional problem of generalized thermoelasticity with Green–Naghdi theory. Int. Commu. Heat Mass Trans. 36(2009), 857–864.
  • [10] Karmakar R., Kanoria M.: Elasto-thermodiffusive response in a spherically isotropic hollow sphere. J. Therm. Stress. 38(2015), 427–446.
  • [11] Sherief H.H., Hussein E.M.: Two-dimensional problem for a thick plate with axisymmetric distribution in the theory of generalized thermoelastic diffusion. Math. Mech. Solids 21(2016), 413–425.
  • [12] Hetnarski R.B., Ignaczak J.: Generalized thermoelasticity. J. Therm. Stress. 22(1999), 451–476.
  • [13] Hetnarski, R.B., Ignaczak, J.: Non-classical dynamical thermoelasticity. Int. J. Sol. Struct. 37(2000), 215–224.
  • [14] Tzou D.Y.: A unified field approach for heat conduction from macro- to microscales. ASME J. Heat Transfer 117 (1995), 8–16.
  • [15] Choudhuri S.R.: On a thermoplastic three-phase-lag model. J. Therm. Stress. 30(2007), 231–238.
  • [16] Green A.E., Naghdi P.M.: A re-examination of the basic postulate of thermomechanics. Proc. Roy. Soc. A 432(1991), 171–194.
  • [17] Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(1992), 253–264.
  • [18] Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(1993), 189–208.
  • [19] Quintanilla R., Racke R.: A note on stability in three-phase-lag heat conduction. Int. J. Heat Mass Transfer 51(2008), 24–29.
  • [20] Kar, A., Kanoria, M.: Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect. Appl. Math. Mod. 33(2009), 3287–3298.
  • [21] Said S.M., Othman M.I.A.: Gravitational effect on a fiber-reinforced thermoelastic medium with temperature-dependent properties for two different theories. Iran. J. Sci. Technol. Trans. Mech. Eng. 40(2016), 223–232.
  • [22] Othman M.I.A., Eraki E.E.M.: Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model. Mechanics Based Design of Structures and Machines, An International Journal 45(2017), 145-159.
  • [23] Zeeshan A., Majeed A., Ellahi R.: Effect of magnetic dipole on viscous ferro- fluid past a stretching surface with thermal radiation. J. Molecular Liquids 215(2016), 549–554.
  • [24] Khan A.A., Muhammad S., Ellahi R., Zaigham Zia Q.M.: Bionic study of variable viscosity on MHD peristaltic flow of pseudoplastic fluid in an asymmetric channel. J. Magnetics 21(2016), 273–280.
  • [25] Ellahi R., Shivanian E., Abbasbandy S., Hayat T.: Numerical study of magneto- hydrodynamics generalized Couette flow of Eyring-Powell fluid with heat transfer and slip condition. Int. J. Numer. Method H. 26(2016), 1433–1445.
  • [26] Bhatti M.M., Ellahi R., Zeeshan A.: Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. J. Mol. Liq. 222(2016), 101–108.
  • [27] Othman M.I.A., Abouelregal A.E.: The effect of pulsed laser radiation on a thermoviscoelastic semi-infinite solid under two-temperature theory. Arch. Thermodyn. 38(2017), 3, 77–98.
  • [28] Othman, M.I.A., Tantawi, R.S., Eraki, E.E.M.: Effect of rotation on a semiconducting medium with two-temperatures under L-S theory. Arch. Thermodyn. 38(2017), 2, 101-122.
  • [29] Kucypera S.: Analysis of the possibility of determining the internal structure of composite material by estimating its thermal diffusivity. Arch. Thermodyn 35(2014), 1, 3-15.
  • [30] Sheikholeslami M., Zaigham Zia Q.M., Ellahi R.: Influence of induced magnetic field on free convection of nanofluid considering Koo-Kleinstreuer (KKL) correlation. Appl. Sci. 6(2016), 324, 1–13.
  • [31] Khan A.A., Usman H., Vafai K., Ellahi R.: Study of peristaltic flow of magnetohydrodynamic Walter’s B fluid with slip and heat transfer. Scientia Iranica 23(2016), 2650–2662.
  • [32] Bhatti M.M., Zeeshan A., Ellahi R.: Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc. Res. 110(2017) 32–42.
  • [33] Ellahi R., Tariq M.H., Hassan M., Vafai K.: On boundary layer magnetic flow of nano-Ferroliquid under the influence of low oscillating over stretchable rotating disk. J. Mol. Liq. 229(2017), 339–345.
  • [34] Bhatti M.M., Zeeshan A., Ellahi R., Ijaz N.: Heat and mass transfer of twophase flow with Electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field. J. Mol. Liq. 230(2017), 237–246.
  • [35] Youssef H.M.: Theory of two-temperature generalized thermoelasticity. IMA J. Appl. Math. 71(2005), 383–390.
  • [36] Othman M.I.A., Said S.M.: Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories. Int. J. Thermophys. 34(2013), 366– 383.
  • [37] Thomas L.: Fundamentals of Heat Transfer. Prentice-Hall Inc, Englewood Cliffs 1980.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f93d5b51-e10e-42ec-9d53-06c70877f57b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.