PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving mechanical and thermal properties of unsaturated polyester resin by adding automotive glass waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Poprawa właściwości mechanicznych i termicznych nienasyconej żywicy poliestrowej poprzez dodanie szklanych odpadów przemysłu motoryzacyjnego
Języki publikacji
EN
Abstrakty
EN
The primary goal of this study was to improve a number of mechanical properties of UPE (unsaturated polyester) by using available and cheap particulate fillers, such as reinforcement with powder with a particle size of 75 μm. A composite of UPE with automotive glass waste (as filler materials) was prepared, and some mechanical and thermal properties were studied at certain weight percentages (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50%). A comparison was made between the polymeric composites before and after the process of reinforcing them with waste automotive glass, and it was found that with a 30% content of these additives they showed good mechanical properties. These additions were made at different temperatures: 8°C, 25°C and 50°C. The results before and after the reinforcement process for polymer composites showed that there was an improvement in the mechanical properties (compressive strength, hardness and impact resistance) with a decrease in the modulus of elasticity (Young’s modulus). When processing was carried out at a temperature of 8°C, a decrease in the values of the mechanical properties (compressive strength, impact strength, modulus of elasticity, thermal conductivity) was observed in varying proportions, with an increase in the values of hardness. Conversely, when the samples were heated to a temperature of 50°C, there was an increase in the values of the above-mentioned properties and a significant decrease in the hardness values. Throughout the research, various measurement techniques were used, including scanning electron microscopy (SEM), infrared spectroscopy (IR) and thermogravimetric analysis (TGA). Their purpose was to monitor the changes that occurred in the polymer as a result of the use of the reinforcing material (automotive glass).
PL
Głównym celem badań było poprawienie właściwości mechanicznych UPE (nienasyconego poliestru) poprzez zastosowanie dostępnych i tanich wypełniaczy cząsteczkowych, na przykład przez wzmocnienie proszkiem o wielkości cząstek wynoszącej 75 μm. Przygotowano kompozyt UPE ze szklanymi odpadami przemysłu motoryzacyjnego (jako materiałem wypełniającym) i zbadano wybrane właściwości mechaniczne i termiczne przy określonych procentach wagowych (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% i 50%). Porównano kompozyty polimerowe przed procesem wzmacniania odpadami szklanymi i po nim. Stwierdzono, że przy 30-procentowym udziale tych dodatków wykazywały one dobre właściwości mechaniczne. Dodatki zostały wprowadzone w różnych temperaturach: 8°C, 25°C i 50°C. Analiza wyników przed wzmocnieniem kompozytów polimerowych i po tym procesie wykazała, że nastąpiła poprawa właściwości mechanicznych (wytrzymałości na ściskanie, twardości i udarności) przy spadku modułu sprężystości (modułu Younga). Po przetwarzaniu w temperaturze 8°C odnotowano spadek wartości parametrów mechanicznych (wytrzymałości na ściskanie, udarności, modułu sprężystości, przewodności cieplnej) w różnych proporcjach przy jednoczesnym wzroście twardości. Z kolei po podgrzaniu próbek do temperatury 50°C zwiększyły się wartości wymienionych właściwości i znacznie zmniejszyła twardość. W badaniach wykorzystano różne techniki pomiarowe, w tym skaningową mikroskopię elektronową (SEM), spektroskopię w podczerwieni (IR) i analizę termograwimetryczną (TGA), w celu zweryfikowania zmian zachodzących w polimerze w wyniku zastosowania materiału wzmacniającego (szklanych odpadów przemysłu motoryzacyjnego).
Rocznik
Tom
Strony
294--305
Opis fizyczny
Bibliogr. 43 poz., fot., tab., wykr.
Twórcy
  • Department of Chemistry, Education College for Girls, University of Mosul, Mosul, Iraq
  • Presidency of the Mosul University, Mosul, Iraq
  • Department of Chemistry, Education College for Girls, University of Mosul, Mosul, Iraq
Bibliografia
  • [1] Assiah Madha, Bouziz Amina. 2019. Morphological Study of the Fibrous Plant and Preparation of Composite Materials of the Base of the Unsatisfied Polyester. Master’s thesis. Faculty of Science, Organic Chemistry, Mohamed Boudiaf University of M’Sila, People’s Democratic Republic of Algeria.
  • [2] A. Hamood Israa. 2009. Impact Behavior of Epoxy Blends and Composites. Master’s thesis. Department of Applied Sciences, University of Technology, Iraq.
  • [3] M.P. Groover. 2012. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems. Hoboken, New Jersey: John Wiley and Sons.
  • [4] F. Asuke, V.S. Aigbodion, M. Abdulwahab, O.S.I. Fayomi, A.P.I. Popoola, C.I. Nwoyi, B. Garba. 2012. “Effects of Bone Particle on the Properties and Microstructure of Polypropylene/Bone Ash Particulate Composites.” Results in Physics 2: 135–141. DOI: 10.1016/j.rinp.2012.09.001.
  • [5] S.O. Adeosun, E.I. Akpan, H.A. Akanegbu, 2015. “Thermo-Mechanical Properties of Unsaturated Polyester Reinforced with Coconut and Snail Shells.” International Journal of Composite Materials 5(3): 52–64. DOI: 10.5923/j.cmaterials.20150503.02.
  • [6] M. Koleva, A. Zheglova, V. Vassilev, E. Fidancevska. 2011. Composites Containing Waste Materials. In: P. Těšinova (ed.). Advances in Composite Materials: Analysis of Natural and Man-Made Materials. London: Intech Open. DOI: 10.5772/18215.
  • [7] W. F. Smith, J. Hashemi. 2006. “Foundations of Materials Science and Engineering.” Boston: McGraw-Hill..
  • [8] A. Shayan, A. Xu. 2004. “Value-Added Utilization of Waste Glass in Concrete.” Cement and Concrete Research 34(1): 81–89. DOI: 10.1016/S0008-8846(03)00251-5.
  • [9] A. Shayan, A. Xu. 2006. “Performance of Glass Powder as a Pozzolanic Material in Concrete: A Field Trial on Concrete Slabs.” Cement and Concrete Research 36(3): 457–468. DOI: 10.1016/j.cemconres.2005.12.012.
  • [10] L. M. Federico, S. E. Chidiac. 2009. “Waste Glass as a Supplementary Cementitious Material in Concrete – Critical Review of Treatment Methods.” Cement and Concrete Composites 31 (8): 606–610. DOI: 10.1016/j. cemconcomp.2009.02.001.
  • [11] S.M. Chikhalikar, S.N. Tande. 2012. “An Experimental Investigation on Characteristics Properties of Fiber Reinforced Concrete Containing Waste Glass Powder as Pozzolona.” 37th Conference on Our World in Concrete and Structures, Singapore.
  • [12] W. Jin., C. Meyer, S. Baxter. 2000. “»Glascrete« – Concrete with Glass Aggregates.” ACI Materials Journal 97(2): 208–213.
  • [13] J. Choudhary, B. Kumar, A. Gupta. 2021. “Utilization of Waste Glass Powder and Glass Composite Fillers in Asphalt Pavements.” Advances in Civil Engineering: 3235223. DOI: 10.1155/2021/3235223.
  • [14] K. C. Kouadio, B. Traoré, S. P. Kaho, C. H. Kouakou, E. Emeruwa. 2020. “Influence of a Mineral Filler on the Fire Behaviour and Mechanical Properties of a Wood Waste Composite Material Stabilized with Expanded Polystyrene.” Open Journal of Applied Sciences 10(12): 4236. DOI: 10.4236/ojapps.2020.1012059.
  • [15] A. Atiqah, M.A. Maleque, M. Jawaid, M. Iqbal. 2014. “Development of Kenaf- -Glass Reinforced Unsaturated Polyester Hybrid Composite for Structural Applications.” Composites Part B: Engineering 56: 68–73. DOI: 10.1016/S0008-8846(03)00251-5.
  • [16] S. Kumari, S. Agarwal, S. Khan. 2022. “Micro/Nano Glass Pollution as an Emerging Pollutant in Near Future.”Journal of Hazardous Materials Advances 6: 100063.
  • [17] H. Pıhtılı, N. Tosun. 2002. “Investigation of the Wear Behaviour of a Glass-Fibre-Reinforced Composite and Plain Polyester Resin.” Composites Science and Technology 62(3): 367–370. DOI: 10.1016/S0266-3538(01)00196-8.
  • [18] M. H. M. Ameen, E. Z. Sulyman. 2023. “Preparation of Polymeric Composites from Epoxy and High-Density Polyethylene and Study of Some of Their Mechanical.” Journal of Survey in Fisheries Sciences 10(1S): 5368–5378.
  • [19] E. Armitage .1960. Sixth Form Practical Physics. London: Murray.
  • [20] W. S. Lau. 1999. Infrared Characterization for Microelectronics. Singapore: World Scientific.
  • [21] R.B. Seymour. 1990. Polymeric Composites. Utrecht: VSP.
  • [22] H.A. Albakry. 2012. “Studies of the Mechanical Properties of Unsaturated Polyester Composite Reinforced by Randomly Woven Fiber Glass and Effect of Acidic Solutions on Some of Its Physical Properties.” Rafidain Journal of Science 23(2): 114–129. DOI: 10.33899/rjs.2012.28858.
  • [23] H.H. Thonon, N.A. Hussein. 2019. “Mechanical and Physical Properties of Epoxy and Unsaturated Polyether Complexes Reinforced with Glass Fiber and Nanomaterial Alumina Powder.” Journal of Education and Science 28(1): 273–293. DOI: 10.33899/edusj.2019.161055.
  • [24] I.N. Deeb, M. Khoury. 2023. “Study of the Effect of Fiber Length and the Percentage of Glass Fibers Used with Plasticizers in Improving the Resistance of Cement Mortar to Compression and Bending.” Al-Baath University Journal 45(1).
  • [25] S.D. Mohammed, E.Z. Sulyman, R.A.Saad-Aldeen, E.Q. Hammadi. 2021. “Study the Mechanical and Physical Properties of an Epoxy Compound with Sulfur.” Iraqi National Journal of Chemistry 21(3).
  • [26] M. M. Saleh, H. Khemakhem, I. K. Jassim, R. H. Al-Saqa. 2024. “Structure and Mechanical Properties of Cermet Ni-Al/MSZ Thick Coating Prepared by Flame Spraying Technique.” Ochrona przed Korozją 67(1): 9–14. DOI: 10.15199/40.2024.1.2.
  • [27] M. Samir Atta, A. Uday Hamid, A. Mustafa Zaid, G. Basma Ali. 2012. “Study of the Effect of Reinforcement and Temperature on the Shock Resistance of a Polymeric Mixture.” Ibn Al-Haytham Journal of Pure and Applied Sciences 25(3).
  • [28] S. Obaid Abdulghani. 2021. “Preparation and Characterization of Polymer-Based Hybrid Nanocomposites for Structural Applications.” Tikrit University, College of Education for Pure Sciences, Department of Physics.
  • [29] R. Ali Hassan, Z. Balqis Muhammad, A. Salam Hussein, 2010, “The Effect of Temperatures and Chemical Solutions on the Elasticity Modulus of Hybrid Composite Materials.” Journal of Engineering and Technology 28(13): 693.
  • [30] M. K. J. Al-Atrash, E. Z. S. A. Halim. 2022. “Thermal and Mechanical Study of Polymeric Composites Prepared from Epoxy with Iron Filings.” International Journal of Health Sciences 6(S4): 9708–9719. DOI: 10.53730/ijhs.v6nS4.12048.
  • [31] A.A. Muhammad. 1993. Chemistry of Plastics. Mosul: Dar Al-Kutub for Printing and Publishing.
  • [32] R. A. K. A. Al-Safi. 2001. Study of the Thermal and Mechanical Properties of Novolac and Its Compounds. Master’s thesis. University of Technology, Iraq.
  • [33] R. J. Aziz, M. J. Hussain. 2022. “Improving the Mechanical Properties and Thermal Resistance of Polyurethane.” Journal of the College of Basic Education 16(61): 821–837. DOI: 10.35950/cbej.v13i61.7160.
  • [34] A.G. Hassan. 2017. “Studying the Effect of Adding Silica Particles on Mechanical Properties of Unsaturated Polyester Reinforced Glass Fiber Composites.” Al-Qadisiyah Journal of Engineering Sciences 10(1): 16–29.
  • [35] R. Ibrahiem, E. Sulyman. 2019. “Preparation Polymeric Composites from Epoxy with Randomly Woven Fiber Glass and Studies the Mechanical Properties.” Rafidain Journal of Science 28(3): 104–115. DOI: 10.33899/rjs.2019.163163.
  • [36] A. Adam, K. Abdullah, K. Al-Ghita, H. Ali. 1983. Polymer Technology and Chemistry. College of Science, University of Basra.
  • [37] D.R. Saadallah, E.Z. Sulyman. 2022. “Preparation and Study of Some Mechanical and Thermal Properties of Epoxy Composites with Natural Styrene Butadiene Rubber (Damaged Tires).” International Journal of Health Sciences 6(S1): 6278–6291. DOI: 10.53730/ijhs.v6nS1.6302.
  • [38] A. M. Ahmed, E. Z. Sulyman. 2022. ”Preparation and Study of Mechanical and Thermal Properties of Polymeric Composites of Unsaturated and Polyester Cellulose Fibers.” International Journal of Health Sciences 6(S1): 9305– 9321. DOI: 10.53730/ijhs.v6nS1.7110.
  • [39] B. Ahmadi, S. Salimi, A.S. Khorashad. 2018. “Information and the Second Law of Thermodynamics.” arXiv:1809.00611. DOI: 10.48550/arXiv.1809.00611.
  • [40] Y. Ohki, N. Hirai. 2023.“Thermal Ageing of Soft and Hard Epoxy Resins”. High Voltage 8(1): 12–20. DOI: 10.1049/hve2.12259.
  • [41] R.W. Jassim, E.Z. Sulyman, A.K. Hasan. 2023.“Study Of Some Mechanical Properties of the Prepared Polymeric Composites Unsaturated Polyester with Gyrex Clay.” Journal of Survey in Fisheries Sciences 10(2): 1085–1094. DOI: 10.53555/sfs.v10i2.1568.
  • [42] L. Khoun, R.I. Chaudhuri, P. Hubert. 2011. “Effect of Low-Profile Additives on Thermo-Mechanical Properties of Glass Fiber-Reinforced Unsaturated Polyester Composites.” Journal of Reinforced Plastics and Composites 30(9): 815–823. DOI: 10.1177/0731684411412643.
  • [43] L. D’Urso, M.R. Acocella, G. Guerra, V. Iozzino, F. De Santis, R. Pantani. 2018. “PLA Melt Stabilization by High-Surface-Area Graphite and Carbon Black.” Polymers 10(2): 139. DOI: 10.3390/polym10020139.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9398dcd-e643-49a5-a038-637fe1e05ce5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.