Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mixed convection heat transfer of nanofluid flow in a heated square cylinder under the influence of a magnetic field is considered in this paper. ANSYS FLUENT computational fluid dynamics (CFD) software with a finite volume approach is used to solve unsteady two-dimensional Navier-Stokes and energy equations. The numerical solutions for velocity, thermal conductivity, temperature, Nusselt number and the effect of the parameters have been obtained; the intensity of the magnetic field, Richardson number, nanoparticle volume fraction, magnetic field parameter and nanoparticle diameter have also been investigated. The results indicate that as the dimen-sions of nanoparticles decrease, there is an observed augmentation in heat transfer rates from the square cylinder for a fixed volume concentration. This increment in heat transfer rate becomes approximately 2.5%–5% when nanoparticle size decreases from 100 nm to 30 nm for various particle volume fractions. Moreover, the magnitude of the Nusselt number enhances with the increase in magnetic field intensity and has the opposite impact on the Richardson number. The findings of the present study bear substantial implications for diverse applications, particularly in the realm of thermal management systems, where optimising heat transfer is crucial for enhancing the efficiency of electronic devices, cooling systems and other technological advancements.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
536--547
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
autor
- Department of Bioscience, CASH, Mody University of Science & Technology, Lakshmangarh, Rajasthan, India
autor
- Department of Mathematics, Birla Institute of Technology and Science, Pilani, Rajasthan, India
autor
- School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana, India
autor
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
autor
- Industrial Engineering Department, College of Applied Sciences, AL MAAREFA UNIVERSITY, Riyadh, Saudi Arabia
- Mechanical Department, Faculty of Engineering, Suez Canal University, El Salam District, Egypt
Bibliografia
- 1. Seyyedi SM, Hashemi-Tilehnoee M, del Barrio EP, Dogonchi AS, Sharifpur M. Analysis of magneto-natural-convection flow in a semi-annulus enclosure filled with a micropolar-nanofluid; a computational framework using CVFEM and FVM. Journal of Magnetism and Mag-netic Materials. 2023; 568:170407. https://doi.org/10.1016/j.jmmm.2023.170407
- 2. Abbas N, Nadeem S, Issakhov A. Transportation of modified nanoflu-id flow with time dependent viscosity over a Riga plate: exponentially stretching. Ain Shams Engineering Journal. 2021;12(4):3967-73. https://doi.org/10.1016/j.asej.2021.01.034
- 3. Lee S, Choi SS, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. 1999;121:280–289. https://doi.org/10.1115/1.2825978
- 4. Mostafizur RM, Saidur R, Aziz AA, Bhuiyan MH. Thermophysical properties of methanol based Al2O3 nanofluids. International Journal of Heat and Mass Transfer. 2015;85:414-9. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.075
- 5. Sharma BK, Kumawat C, Bhatti MM. Optimizing energy generation in power-law nanofluid flow through curved arteries with gold nanoparti-cles. Numerical Heat Transfer, Part A: Applications. 2023;1-33. https://doi.org/10.1080/10407782.2023.2232123
- 6. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow con-ditions. International journal of heat and mass transfer. 2004;47(24):5181-8. https://doi.org/10.1016/ j.ijheatmasstransfer.2004.07.012
- 7. Shahi M, Mahmoudi AH, Talebi F. Numerical study of mixed convec-tive cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid. International Communications in Heat and Mass Transfer. 2010;37(2):201-13. https://doi.org/10.1016/j.icheatmasstransfer.2009.10.002
- 8. Bovand M, Rashidi S, Esfahani JA. Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle. En-ergy conversion and management. 2015;97:212-23. https://doi.org/10.1016/j.enconman.2015.03.042
- 9. Hayat T, Khan MI, Waqas M, Alsaedi A, Farooq M. Numerical simu-lation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Computer methods in applied mechanics and engineering. 2017;315:1011-24. https://doi.org/10.1016/j.cma.2016.11.033
- 10. Hayat T, Waqas M, Alsaedi A, Bashir G, Alzahrani F. Magnetohydro-dynamic (MHD) stretched flow of tangent hyperbolic nanoliquid with variable thickness. Journal of molecular liquids. 2017 Mar 1;229:178-84. Available from : https://doi.org/10.1016/j.molliq.2016.12.058
- 11. Sheikholeslami M, Ellahi R. Electrohydrodynamic nanofluid hydro-thermal treatment in an enclosure with sinusoidal upper wall. Applied Sciences. 2015;5(3):294-306. https://doi.org/10.3390/app5030294
- 12. Sheikholelami M, Chamkha AJ. Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinus-oidal wall. Numerical Heat Transfer, Part A: Applications. 2016;69(7):781-93. https://doi.org/10.1080/10407782.2015.1090819
- 13. Kandelousi MS, Ellahi R. Simulation of ferrofluid flow for magnetic drug targeting using the lattice Boltzmann method. Zeitschrift für Naturforschung A. 2015;70(2):115-24. https://doi.org/10.1515/zna-2014-0258
- 14. Sarfraz M, Khan M, Al-Zubaidi A, Saleem S. Tribology-informed analysis of convective energy transfer in ternary hybrid nanofluids on inclined porous surfaces. Tribology International. 2023;188:108860. https://doi.org/10.1016/j.triboint.2023.108860
- 15. Sarfraz M, Khan M, Al-Zubaidi A, Saleem S. Enhancing energy transport in Homann stagnation-point flow over a spiraling disk with ternary hybrid nanofluids. Case Studies in Thermal Engineering. 2023;49:103134. https://doi.org/10.1016/j.csite.2023.103134
- 16. Chaudhary RC, Sharma BK. Combined heat and mass transfer by laminar mixed convection flow from a vertical surface with induced magnetic field. Journal of Applied Physics. 2006;99(3):034901. https://doi.org/10.1063/1.2161817
- 17. Sharma BK, Mishra A, Gupta S. Heat and mass transfer in magneto-biofluid flow through a non-Darcian porous medium with Joule effect. Journal of Engineering Physics and Thermophysics. 2013;86:766-74. 17. https://link.springer.com/article/10.1007/s10891-013-0893-0
- 18. Raj Kumawat S, Vyas H, Mohan R, Sasidharan R, Yadav B, Gupta N. 90 versus 60 min of early skin‐to‐skin contact on exclusive breast-feeding rate in healthy infants'≥ 35 weeks: A randomised controlled trial. Acta Paediatrica. 2024;113(2):199-205. https://doi.org/10.1111/apa.17021
- 19. Mishra A, Sharma BK. MHD mixed convection flow in a rotating channel in the presence of an inclined magnetic field with the Hall ef-fect. Journal of Engineering Physics and Thermophysics. 2017; 90:1488-99. https://doi.org/10.1007/s10891-017-1710-y
- 20. Sharma S, Maiti DK, Alam MM, Sharma BK. Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow. Wind Struct. 2019;29(1):65-75. https://doi.org/10.12989/was.2019.29.1.065
- 21. Turki S, Abbassi H, Nasrallah SB. Effect of the blockage ratio on the flow in a channel with a built-in square cylinder. Computational Me-chanics. 2003;33:22-9. https://doi.org/10.1007/s00466-003-0496-2
- 22. Bouaziz M, Kessentini S, Turki S. Numerical prediction of flow and heat transfer of power-law fluids in a plane channel with a built-in heated square cylinder. International Journal of Heat and Mass Transfer. 2010;53(23-24):5420-9. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.014
- 23. Hayat T, Anwar MS, Farooq M, Alsaedi A. Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer. Plos one. 2015;10(3):e0118815. https://doi.org/10.1371/journal.pone.0118815
- 24. Sharma BK, Sharma P, Mishra NK, Fernandez-Gamiz U. Darcy-Forchheimer hybrid nanofluid flow over the rotating Riga disk in the presence of chemical reaction: artificial neural network approach. Al-exandria Engineering Journal. 2023;76:101-30. https://doi.org/10.1016/j.aej.2023.06.014
- 25. Kumar A, Sharma BK, Gandhi R, Mishra NK, Bhatti MM. Response surface optimization for the electromagnetohydrodynamic Cu-polyvinyl alcohol/water Jeffrey nanofluid flow with an exponential heat source. Journal of Magnetism and Magnetic Materials. 2023;576:170751. https://doi.org/10.1016/j.jmmm.2023.170751
- 26. Sharma BK, Sharma P, Mishra NK, Noeiaghdam S, Fernandez-Gamiz U. Bayesian regularization networks for micropolar ternary hybrid nanofluid flow of blood with homogeneous and heterogeneous reactions: Entropy generation optimization. Alexandria Engineering Journal. 2023;77:127-48. https://doi.org/10.1016/j.aej.2023.06.080
- 27. Sharma BK, Khanduri U, Mishra NK, Chamkha AJ. Analysis of Arrhenius activation energy on magnetohydrodynamic gyrotactic mi-croorganism flow through porous medium over an inclined stretching sheet with thermophoresis and Brownian motion. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Me-chanical Engineering. 2023;237(5):1900-14. https://doi.org/10.1177/09544089221128768
- 28. Dogonchi AS, Mishra SR, Chamkha AJ, Ghodrat M, Elmasry Y, Alhumade H. Thermal and entropy analyses on buoyancy-driven flow of nanofluid inside a porous enclosure with two square cylinders: Fi-nite element method. Case Studies in Thermal Engineering. 2021;27:101298. https://doi.org/10.1016/j.csite.2021.101298
- 29. Afshar SR, Mishra SR, Dogonchi AS, Karimi N, Chamkha AJ, Abulkhair H. Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink. Journal of the Taiwan Institute of Chemical Engineers. 2021;128:98-113. https://doi.org/10.1016/j.jtice.2021.09.006
- 30. Shao W, Nayak MK, El-Sapa S, Chamkha AJ, Shah NA, Galal AM. Entropy optimization of non-Newtonian nanofluid natural convection in an inclined U-shaped domain with a hot tree-like baffle inside and considering exothermic reaction. Journal of the Taiwan Institute of Chemical Engineers. 2023;148:104990. https://doi.org/10.1016/j.jtice.2023.104990
- 31. Dogonchi AS, Bondareva NS, Sheremet MA, El-Sapa S, Chamkha AJ, Shah NA. Entropy generation and heat transfer performance analysis of a non-Newtonian NEPCM in an inclined chamber with complicated heater inside. Journal of Energy Storage. 2023;72:108745. https://doi.org/10.1016/j.est.2023.108745
- 32. Nayak MK, Dogonchi AS, Rahbari A. Free convection of Al2O3-water nanofluid inside a hexagonal-shaped enclosure with cold diamond-shaped obstacles and periodic magnetic field. Case Studies in Ther-mal Engineering. 2023;50:103429. https://doi.org/10.1016/j.csite.2023.103429
- 33. Sharma BK, Kumawat C, Makinde OD. Hemodynamical analysis of MHD two phase blood flow through a curved permeable artery hav-ing variable viscosity with heat and mass transfer. Biomechanics and Modeling in Mechanobiology. 2022;21(3):797-825. https://doi.org/10.1007/s10237-022-01561-w
- 34. Sharma BK, Kumawat C, Khanduri U, Mekheimer KS. Numerical investigation of the entropy generation analysis for radiative mhd power-law fluid flow of blood through a curved artery with hall effect. Waves in Random and Complex Media. 2023:1-38. https://doi.org/10.1080/17455030.2023.2226228
- 35. Kumawat C, Sharma BK, Al-Mdallal QM, Rahimi-Gorji M. Entropy generation for MHD two phase blood flow through a curved permea-ble artery having variable viscosity with heat and mass transfer. In-ternational Communications in Heat and Mass Transfer. 2022;133: 105954. https://doi.org/10.1016/j.icheatmasstransfer.2022.105954
- 36. Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. International journal of heat and mass transfer. 2005;48(13):2652-61. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029
- 37. Santra AK, Sen S, Chakraborty N. Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. International journal of thermal sciences. 2009;48(2):391-400.https://doi.org/10.1016/j.ijthermalsci.2008.10.004
- 38. Yasmeen T, Hayat T, Khan MI, Imtiaz M, Alsaedi A. Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homo-geneous-heterogeneous reactions. Journal of Molecular liquids. 2016;223:1000-5. https://doi.org/10.1016/j.molliq.2016.09.028
- 39. Nawaz M, Nazir U, Saleem S, Alharbi SO. An enhancement of thermal performance of ethylene glycol by nano and hybrid nanopar-ticles. Physica A: Statistical Mechanics and its Applications. 2020;551:124527. https://doi.org/10.1016/j.physa.2020.124527
- 40. Sohankar A, Norberg C, Davidson L. Low‐Reynolds‐number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. International journal for numerical methods in fluids. 1998;26(1):39-56. https://doi.org/10.1002/(SICI)1097-0363
- 41. Abbassi H, Turki S, Nasrallah SB. Channel flow past bluff-body: outlet boundary condition, vortex shedding and effects of buoyancy. Computational Mechanics.2002;28(1):10-6. https://doi.org/10.1007/s004660100261
- 42. Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. Journal of Physics D: Applied Physics. 2009;42(5):055501. DOI 10.1088/0022-3727/42/5/055501
- 43. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer. 2000;43(19):3701-7. https://doi.org/10.1016/S0017-9310(99)00369-5
- 44. Vajjha RS, Das DK. Experimental determination of thermal conduc-tivity of three nanofluids and development of new correlations. Inter-national journal of heat and mass transfer. 2009;52(21-22):4675-82. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
- 45. Dogonchi AS, Waqas M, Afshar SR, Seyyedi SM, Hashemi-Tilehnoee M, Chamkha AJ, Ganji DD. Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by consider-ing Joule heating, thermal radiation, and adding different nanoparti-cles. International Journal of Numerical Methods for Heat & Fluid Flow. 2020;30(2):659-80. https://doi.org/10.1108/HFF-05-2019-0390
- 46. Abbas N, Nadeem S, Issakhov A. Transportation of modified nanoflu-id flow with time dependent viscosity over a Riga plate: exponentially stretching. Ain Shams Engineering Journal. 2021;12(4):3967-73. https://doi.org/10.1016/j.asej.2021.01.034
- 47. Sivaraj R, Animasaun IL, Olabiyi AS, Saleem S, Sandeep N. Gyro-tactic microorganisms and thermoelectric effects on the dynamics of 29 nm CuO-water nanofluid over an upper horizontal surface of pa-raboloid of revolution. Multidiscipline Modeling in Materials and Struc-tures. 2018 Oct 8;14(4):695-721. https://doi.org/10.1108/MMMS-10-2017-0116
- 48. Owen MS. ASHRAE Handbook: Fundamentals, American Society of Heating. Refrigeration and Air-Conditioning Engineers. 2009.
- 49. Scarpa F, Smith FC. Passive and MR fluid-coated auxetic PU foam–mechanical, acoustic, and electromagnetic properties. Journal of in-telligent material systems and structures. 2004;15(12):973-9. https://doi.org/10.1177/1045389X04046610
- 50. ANSYS C. Reference Guide. Release 12.1. ANSYS. Inc. 2009.
- 51. Uddin MJ, Rasel SK, Rahman MM, Vajravelu K. Natural convective heat transfer in a nanofluid-filled square vessel having a wavy upper surface in the presence of a magnetic field. Thermal Science and Engineering Progress. 2020;19:100660. https://doi.org/10.1016/j.tsep.2020.100660
- 52. Abdi H, Motlagh SY, Soltanipour H. Study of magnetic nanofluid flow in a square cavity under the magnetic field of a wire carrying the electric current in turbulence regime. Results in Physics. 2020;18:103224. https://doi.org/10.1016/j.rinp.2020.103224
- 53. Tzirtzilakis EE, Xenos MA. Biomagnetic fluid flow in a driven cavity. Meccanica. 2013;48:187-200. https://doi.org/10.1007/s11012-012-9593-7
- 54. Lee S, Choi SS, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles.1999;121(2): 280-289. https://doi.org/10.1115/1.2825978
- 55. Philip J, Shima PD, Raj B. Evidence for enhanced thermal conduc-tion through percolating structures in nanofluids. Nanotechnology. 2008;19(30):305706. DOI 10.1088/0957-4484/19/30/305706
- 56. Shima PD, Philip J, Raj B. Influence of aggregation on thermal conductivity in stable and unstable nanofluids. Applied Physics Let-ters. 2010;97(15). https://doi.org/10.1063/1.3497280
- 57. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. International Journal of heat and fluid flow. 2000;21(1):58-64. https://doi.org/10.1016/S0142-727X(99)00067-3
- 58. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer. 2003;125(4):567-74. https://doi.org/10.1115/1.1571080
- 59. Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chemical Engineering & Tech-nology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology. 2006;29(1):72-7. https://doi.org/10.1002/ceat.200500184
- 60. Martínez-Cuenca R, Mondragón R, Hernández L, Segarra C, Jarque JC, Hibiki T, Juliá JE. Forced-convective heat-transfer coefficient and pressure drop of water-based nanofluids in a horizontal pipe. Applied Thermal Engineering. 2016;98:841-9. https://doi.org/10.1016/j.applthermaleng.2015.11.050
- 61. Buschmann MH. Nanofluid heat transfer in laminar pipe flow with twisted tape. Heat Transfer Engineering. 2017;38(2):162-76. https://doi.org/10.1080/01457632.2016.1177381
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f939482b-e48c-4508-b79c-5e9471f6f911