PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermographic Analysis of Thermal Distribution in Human Teeth Based on Composite Fillings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composite materials are used in dentistry to rebuild hard tissues of teeth, destroyed by caries disease. Composites intended for dental direct fillings are polymerized with visible light generated by polymerization lamps. The temperature changes during polymerization can be measured within method like thermography. The study used 20 molars without caries, removed from orthodontic indications, A thermal imaging camera was used to test the temperature distribution of composite materials during the polymerization process. The work was taken up about the possibility of imaging the temperature distribution during the polymerization process of composite fillings in human teeth tissues. Temperature distribution was analyzed at specific locations of tooth tissues, particularly in terms of heat migration towards pulp. At the sites of separation of tooth materials and tissues, an attempt was made to assess the hardness of fillings and tissues. It can be concluded that the temperature during test did not exceed 42 °C, at which the tooth pulp is damaged. During cooling, heat spreads through the filling, not through the tooth tissues. Bulkfill did not show a difference in fill hardness regardless of the distance of the light source but GC composite hardness depends on the distance of the light source.
Słowa kluczowe
Twórcy
  • Faculty of Mechanical Engineering, Department of Materials Engineering, Lublin University of Technology, 36 Nadbystrzycka St., Lublin 20-618, Poland
  • Chair and Department of Periodontology, Medical University of Lublin, Chodźki St. 6, 20-093 Lublin
  • Student of Faculty Medicine-Dentistry on Medical University of Lublin, Chodźki St. 6, 20-093 Lublin
  • Faculty of Mechanical Engineering, Department of Materials Engineering, Lublin University of Technology, 36 Nadbystrzycka St., Lublin 20-618, Poland
  • Chair and Department of Conservative Dentistry with Endodontics, Medical University of Lublin, Chodźki St. 6, 20-093 Lublin
Bibliografia
  • 1. Borowski G., Klepka T., Pawłowska M., Lavagnolo, M.C. Oniszczuk T., Wójtowicz A., Maciej Combrzyński M. Effect of flax fibers addition on the mechanical properties and biodegradability of biocomposites based on thermoplastic starch. Archives of Environmental Protection 2020; 46 (2): 74–82.
  • 2. Voltarelli F.R., dos Santos-Daroz C.B., Corrêa Alves M., Rezende Peris A., Marchi G.M., Effect of different light-curing devices and aging procedures on composite knoop microhardness. Brazilian Oral Research 2009; 23 (4).
  • 3. Czech Z., Minciel E. Light curable composites containing multifunctional acrylated resins : short literature review, Research and Teaching Apparatus 2015; 4.
  • 4. Chang H.S., Cho K., Park S.J., Lee B.N., Hwang C., Oh W.M., Hwang I. Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall. Journal of Applied Oral Science 2013; 21(4): 293–299.
  • 5. Mahn E. Clinical Criteria for successful curing of composite materials. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral 2013; 6(3): 148–153.
  • 6. Al-Qudah A.A., Mitchell C.A., Biagioni P.A., Hussey D.L. Thermographic investigation of contemporary resin-containing dental materials. Journal of Dentistry 200; 5(33): 593–602.
  • 7. Dąbrowski M., Dulski R., Zaborowski P., Aluchna M. Studies of temperature changes of light-curing composite dental materials during polymerization. Works of the Electrotechnical Institute. 2008; 234: 98–104.
  • 8. Hussey D.L., Biagionit P.A., Lameyf P.J. Thermographic measurement of temperature change during resin composite polymerization in vivo. Journal of Dentistry 1995; 23 (5): 267–271.
  • 9. Janeczek M., Herman K., Fita K., Dudek K., Kowalczyk-Zając M., Czajczyńska-Waszkiewicz A., Piesiak-Pańczyszyn D., Kosior P., Dobrzyński M. Assessment of Heat Hazard during the Polymrization of Selected Light-Sensitive Dental Materials. BioMed Research International 2016: 1–7.
  • 10. Walczak M., Drozd K. Caban J. Effect of addition of recast materials on characteristics of Ni-Cr-Mo alloys. Current Issues in Pharmacy and Medical Sciences 32 (2019) – 2, 2019, 71 – 76.
  • 11. Loney R.W., Price R.B. Temperature transmission of high output light-curing units through dentin. Operative Dentistry 2001; 26: 516–20.
  • 12. Pieniak D., Walczak A., Wlaczak M., Przystupa K, Niewczas A.M. Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures. Materials 2020, 13(5), 1255
  • 13. El-Safy S., Akhtar R., Silikas N., Wats D.C. Nano-mechanical propertes of dental resin-composites. Dental Materials 2012; 28: 1292–1300.
  • 14. Gouldstone A., Chollacoop N., Dao M., Li J., Minor A.M., Shen Y.L. Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Materialia 2007; 55: 4015–4039.
  • 15. Oyen M.L., Ko C.C. Indentation variability of natural nanocomposite materials. Journal of Materials Research 2008; 23: 760–7.
  • 16. Pieniak D., Gauda K. Indentation Hardness and Tribological Wear in Conditions of Sliding Friction of the Surface Layer of Composites Based on Methacrylate Resins with Ceramic Nanofiller. Advances in Science and Technology. Research Journal 2020; 14(2): 112–119
  • 17. Lohbauer, U.; Belli, R.; Ferracene, J.L. Factors involved in mechanical fatigue degradation of dental resin composites. Journal of Dental Research 2013; 92: 584–591.
  • 18. Braem, M.; Lambrechts, P.; van Doren, V.; Vanherle, G. In vivo evaluation of four posterior composites: Quantitative wear measurements and clinical behaviour. Dental Materials 1986, 2, 106–113.
  • 19. Gonçalves, F.; Kawano, Y.; Braga, R.R. Contraction stress related to composite inorganic content. Dental Materials 2010; 26: 704–709.
  • 20. Kim, K.H.; Ong, J.L.; Okuno, O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. Journal of Prosthetic Dentistry 2002; 87: 642–649.
  • 21. Meredith N., Watts., Paterson R.C., Strang R. Investigation of the temperature rise produced in the pulp chamber by operative procedures. Journal of Dental Research 2001; 63 (511).
  • 22. Rissi R.C., Cabral A. Fotopolimerização: Principais variáveis clínicas que podem interferir no processo. Revista da Associacao Paulista de Cirurgioes Dentistas. 2002; 56 (2):1 23–128.
  • 23. Abate P.F., Zahra V.N., Macchi R.L. Effect of photopolymerization variables on composite hardness. The Journal of Prosthetic Dentistry 2001; 86 (6): 632–635.
  • 24. Correr Sobrinho L., Lima A.A., Consani S., Sinhoreti M.A.C., Knowles J.C. Influence of curing tip distance on composite Knoop Hardness Values. Brazilian Dental Journal 2000; 11(1): 11–7.
  • 25. Pires J.A.F., Cvitko E., Denehy G.E., Swift E.J. Jr. Effects of curing tip distance on light intensity and composite resin microhardness. Quintessance International 1993; 24 (7) : 517–521.
  • 26. Knežević A., Tarle Z., Meniga A., Šutalo J., Pichler G., Ristić M. Degree of conversion and temperature rise durng polymerization of composite resin samples with blue diodes. Journal of Oral Rehabilitation 2001; 28: 586–591.
  • 27. Rode K.M., Kawano Y., Turbino M.L. Evaluation of curing light distance on resin composite microhardness and polymerization. Operative Dentistry 2007; 32(6): 571–8.
  • 28. Strazzi-Sahyon H.B., Rocha E.P., Assunção W.G.S., Dos Santos P.H. Influence of Light-Curing Intensity on Color Stability and Microhardness of Composite Resins. Interantional Journal of Periodontics and Restorative Dentistry 2020; 40 (1): 129–13.
  • 29. Pryliński S., Kleczewska J., Bociong K., Pacyk A., Domarecka M., Sokołowski J. The influence of different light sources on thermal effects generated during polymerization of bulk-fill flowable dental composite base material. Dental Forum 2015; 2: 35–41.
  • 30. Cacciafesta V, Sfondrini MF, Scribante A, Boehme A, Jost-Brinkmann PG. Effect of light-tip distance on the shear bond strengths of composite resin. Angle Orthodontist 2005; 75(3): 386–91.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f936c3bd-83a0-4328-832f-9a35bc9c16b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.