Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This investigation uses the Genetic Optimization Method to convert a wide-band MIMO antenna into a UWB (3.1GHz-10.6 GHz) MIMO antenna. Initially, a 22 × 42, mm2 wideband 2X2 MIMO antenna was designed using commercial Flame Retardant-4 material. The structure of the antenna patch was designed using half-circular forms on the half-ground plane. The designed MIMO antenna operates throughout a large frequency range of 4.8-9.8 GHz. While it was successful in achieving broad band characteristics, this MIMO antenna was unable to reach ultra-wide band characteristics. The MIMO antenna was operated in UWB ranges by a parametric study, which indicated that the resonating characteristics can be significantly modified by inserting a rectangular slot into the ground plane. Throughout the operational range, it was important to be concerned about improved gain and good isolation. Accordingly, optimization was carried out in order to accomplish the essential, multi-objective goals. The difficult multi-objective design goal is now reduced to an optimization challenge by means of genetic algorithm based random search. One of the performance goals that this optimization strategy aimed to fulfil was an increase in isolation to -20 dB across the entire Ultra-Wideband, with S11 being below -10 dB from 3.1 to 10.6 GHz. It is recommended to randomly select the parameters from their respective ranges for this work. This led to the selection of an optimizer based on random searches. In the operating range, the UWB has a respectable gain of 4 dB to 6 dB and increased isolation to -20 dB, according to the genetic algorithm optimizer’s execution of the predefined multiple-objective task.
Słowa kluczowe
Rocznik
Tom
Strony
987--995
Opis fizyczny
Bibliogr. 32 poz. rys., tab.
Twórcy
autor
- Koneru Lakshmaiah Education Foundation
autor
- Koneru Lakshmaiah Education Foundation
Bibliografia
- [1] S. Modak, T. Khan, T. A. Denidni, and Y. M. M. Antar, “Miniaturized self-isolated uwb mimo planar/cuboidal antenna with dual x-band interference rejection,” AEU-Int. J. Electron. Commun., vol. 143, p. 154020, Jan 2022. [Online]. Available: https://doi.org/10.1016/j.aeue.2021.154020
- [2] A. S. A. El-Hameed, M. G. Wahab, N. A. Elshafey, and M. S. Elpeltagy, “Quad-port uwb mimo antenna based on lpf with vast rejection band,” AEU-Int. J. Electron. Commun., vol. 134, p. 153712, May 2021. [Online]. Available: https://doi.org/10.1016/j.aeue.2021.153712
- [3] S. Arumugam, S. Manoharan, S. K. Palaniswamy, and S. Kumar, “Design and performance analysis of a compact quad-element uwb mimo antenna for automotive communications,” Electronics, vol. 10, no. 18, p. 2184, Sep 2021. [Online]. Available: https://doi.org/10.3390/electronics10182184
- [4] B. Yeboah-Akowuah, E. T. Tchao, M. Ur-Rehman, M. M. Khan, and S. Ahmad, “Study of a printed split-ring monopole for dual-spectrum communications,” Heliyon, vol. 7, no. 9, p. e07928, Sep 2021. [Online]. Available: https://doi.org/10.2139/ssrn.3886316
- [5] M. H. Reddy, D. Sheela, V. K. Parbot, and A. Sharma, “A compact metamaterial inspired uwb-mimo fractal antenna with reduced mutual coupling,” Microsyst. Technol., vol. 27, no. 5, pp. 1971-1983, May 2021. [Online]. Available: https://doi.org/10.1007/s00542-020-05024-z
- [6] S. Ahmad, U. Ijaz, S. Naseer, A. Ghaffar, M. A. Qasim, F. Abrar, N. O. Parchin, C. H. See, and R. Abd-Alhameed, “A jug-shaped cpw-fed ultra-wideband printed monopole antenna for wireless communications networks,” Appl. Sci., vol. 12, no. 2, p. 821, Jan 2022. [Online]. Available: https://doi.org/10.3390/app12020821
- [7] T. Addepalli and V. R. Anitha, “A very compact and closely spaced circular shaped uwb mimo antenna with improved isolation,” AEU-Int. J. Electron. Commun., vol. 114, p. 153016, Feb 2020. [Online]. Available: https://doi.org/10.1016/j.aeue.2019.153016
- [8] M. S. Khan, S. A. Naqvi, A. Iftikhar, S. M. Asif, A. Fida, and R. M. Shubair, “A wlan band-notched compact four element uwb mimo antenna,” Int. J. RF Microw. Comput.-Aided Eng., vol. 30, no. 9, p. e22282, Sep 2020. [Online]. Available: https://doi.org/10.1002/mmce.22282
- [9] D. A. Sehrai, F. Muhammad, S. H. Kiani, Z. H. Abbas, M. Tufail, and S. Kim, “Gain-enhanced metamaterial based antenna for 5g communication standards,” Comput., Mater. Continua, vol. 64, no. 3, pp. 1587-1599, 2020. [Online]. Available: https://doi.org/10.32604/cmc.2020.011057
- [10] N. A. Jan, S. H. Kiani, F. Muhammad, A. Sehrai, A. Iqbal, M. Tufail, and S. Kim, “V-shaped monopole antenna with chichen itza inspired defected ground structure for uwb applications,” CMC Comput. Mater. Continua, vol. 65, pp. 19-32, Jul 2020. [Online]. Available: https://doi.org/10.32604/cmc.2020.011091
- [11] Z. Li, C. Yin, and X. Zhu, “Compact uwb mimo vivaldi antenna with dual band-notched characteristics,” IEEE Access, vol. 7, pp. 38 696-38 701, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2906338
- [12] S. Etoz, C. L. Brace, N. A. Jan, S. H. Kiani, F. Muhammad, A. Sehrai, A. Iqbal, M. Tufail, and S. Kim, “V-shaped monopole antenna with chichen itza inspired defected ground structure for uwb applications,” CMC Comput. Mater., 2024.
- [13] M. R. Kılınc¸ and N. V. Sahinidis, “Exploiting integrality in the global optimisation of mixed-integer nonlinear programming problems with baron,” Optim. Methods Softw., vol. 33, pp. 540-562, Apr 2018. [Online]. Available: https://doi.org/10.1080/10556788.2017.1350178
- [14] S. Arora and S. Singh, “Butterfly optimisation algorithm: a novel approach for global optimisation,” Soft Comput., vol. 23, pp. 715-734, Feb 2019.
- [15] W. Deng, J. Xu, and H. Zhao, “An improved ant colony optimisation algorithm based on hybrid strategies for scheduling problem,” IEEE Access, vol. 7, pp. 20 281-20 292, Feb. 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2897580
- [16] S. Koziel and A. Pietrenko-Dabrowska, “Expedited feature-based quasi-global optimisation of multi-band antenna input characteristics with jacobian variability tracking,” IEEE Access, vol. 8, pp. 83 907-83 915, May 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2992134
- [17] R. K. Verma and D. K. Srivastava, “Optimisation and parametric analysis of slotted microstrip antenna using particle swarm optimisation and curve fitting,” International Journal of Circuit Theory and Applications, vol. 49, pp. 1868-1883, Jul. 2021. [Online]. Available: https://doi.org/10.1002/cta.2957
- [18] R. G. Mishra, R. Mishra, P. Kuchhal, and N. P. Kumari, “Optimisation and analysis of high gain wideband microstrip patch antenna using genetic algorithm,” International Journal of Engineering and Technology, vol. 7, pp. 176-179, May 2018. [Online]. Available: https://doi.org/10.14419/ijet.v7i1.5.9142
- [19] Y.-H. Fang, W.-S. Zhao, F.-K. Lin, D.-W. Wang, J. Wang, and W.-J. Wu, “An amc-based liquid sensor optimised by particle-ant colony optimization algorithms,” IEEE Sensors Journal, vol. 22, pp. 2083-2090, Feb. 2021. [Online]. Available: https://doi.org/10.1109/JSEN.2021.3133688
- [20] M. S. Khan, A. Capobianco, M. F. Shafique, B. Ijaz, A. Naqvi, and B. D. Braaten, “Isolation enhancement of a wideband mimo antenna using floating parasitic elements,” Microwave and Optical Technology Letters, vol. 57, no. 7, pp. 1677-1682, 2015. [Online]. Available: https://doi.org/10.1002/mop.29162
- [21] I. Adam, M. N. M. Yasin, N. Ramli, M. Jusoh, H. A. Rahim, T. B. A. Latef, T. F. T. M. N. Izam, and T. Sabapathy, “Mutual coupling reduction of a wideband circularly polarized microstrip MIMO antenna,” IEEE Access, vol. 7, pp. 97 838-97 845, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2928899
- [22] M. Farahani, J. Pourahmadazar, M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2324-2327, 2017. [Online]. Available: https://doi.org/10.1109/LAWP.2017.2717404
- [23] Y. Li, L. an Bian, Y. Liu, Y. Wang, R. Chen, and S. Xie, “Mutual coupling reduction for monopole MIMO antenna using l-shaped stubs, defective ground and chip resistors,” AEU-International Journal of Electronics and Communications, p. 154524, 2023. [Online]. Available: https://doi.org/10.1016/j.aeue.2022.154524
- [24] V. Dhasarathan, T. K. Tran, J. Kulkarni, B. Garner, and Y. Li, “Mutual coupling reduction in dual-band MIMO antenna using parasitic dollar-shaped structure for modern wireless communication,” IEEE Access, 2023. [Online]. Available: https://doi.org/10.1109/ACCESS.2023.3235761
- [25] F. Urimubenshi, D. B. Konditi, J. de Dieu Iyakaremye, P. M. Mpele, and A. Munyaneza, “A novel approach for low mutual coupling and ultra-compact two port MIMO antenna development for UWB wireless application,” Heliyon, vol. 8, no. 3, p. e09057, 2022. [Online]. Available: https://doi.org/10.1016/j.heliyon.2022.e09057
- [26] A. Ali, J. Tong, J. Iqbal, U. Illahi, A. Rauf, S. U. Rehman, H. Ali, M. M. Qadir, M. A. Khan, and R. M. Ghoniem, “Mutual coupling reduction through defected ground structure in circularly polarized, dielectric resonator-based MIMO antennas for sub-6 GHz 5G applications,” Micromachines, vol. 13, no. 7, p. 1082, 2022. [Online]. Available: https://doi.org/10.3390/mi13071082
- [27] M. Elahi, A. Altaf, E. Almajali, and J. Yousaf, “Mutual coupling reduction in closely spaced MIMO dielectric resonator antenna in H-Plane using closed metallic loop,” IEEE Access, vol. 10, pp. 71 576-71 583, 2022. [Online]. Available: https://doi.org/10.1109/ACCESS.2022.3187433
- [28] Q. Li, M. Abdullah, and X. Chen, “Defected ground structure loaded with meandered lines for decoupling of dual-band antenna,” Journal of Electromagnetic Waves and Applications, vol. 33, pp. 1764-1775, Jun. 2019. [Online]. Available: https://doi.org/10.1080/09205071.2019.1643261
- [29] P. Liu, D. Sun, P. Wang, and P. Gao, “Design of a dual-band MIMO antenna with high isolation for WLAN applications,” Progress In Electromagnetics Research Letters, vol. 74, pp. 23-30, Apr. 2018. [Online]. Available: https://doi.org/10.3390/electronics10141659
- [30] D. Shen, L. Zhang, Y. Jiao, and Y. Yan, “Dual-element antenna with high isolation operating at the WLAN bands,” Microwave and Optical Technology Letters, vol. 61, pp. 2323-2328, Oct. 2019. [Online]. Available: https://doi.org/110.1002/mop.31901
- [31] J. Deng, J. Li, L. Zhao, and L. Guo, “A dual-band inverted-f MIMO antenna with enhanced isolation for WLAN applications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2270-2273, Jun. 2017. [Online]. Available: https://doi.org/10.1109/LAWP.2017.2713986
- [32] J. Y. Deng, Z. J. Wang, J. Y. Li, and L. X. Guo, “A dual-band MIMO antenna decoupled by a meandering line resonator for WLAN applications,” Microwave and Optical Technology Letters, vol. 60, pp. 759-765, Mar. 2018. [Online]. Available: https://doi.org/10.1002/mop.31049
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9334a50-5b6b-44ad-b4ec-a3509ecb2dff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.