PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A 4-D chaotic hyperjerk system with a hidden attractor, adaptive backstepping control and circuit design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel 4-D chaotic hyperjerk system with four quadratic nonlinearities is presented in this work. It is interesting that the hyperjerk system has no equilibrium. A chaotic attractor is said to be a hidden attractor when its basin of attraction has no intersection with small neighborhoods of equilibrium points of the system. Thus, our new non-equilibrium hyperjerk system possesses a hidden attractor. Chaos in the system has been observed in phase portraits and verified by positive Lyapunov exponents. Adaptive backstepping controller is designed for the global chaos control of the non-equilibrium hyperjerk system with a hidden attractor. An electronic circuit for realizing the non-equilibrium hyperjerk system is also introduced, which validates the theoretical chaotic model of the hyperjerk system with a hidden chaotic attractor.
Rocznik
Strony
239--254
Opis fizyczny
Bibliogr. 44 poz., rys., wykr., wzory
Twórcy
  • Research and Development Centre, Vel Tech University, Avadi, Chennai-600062, Tamil Nadu, India.
autor
  • Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413, Iran.
autor
  • Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City
autor
  • Faculty of Computers and Information, Benha, Egypt, School of Engineering and Applied Sciences, Nile University, Sheikh Zayed District, 6th of October, Giza, Egypt
  • Department of Information Technology, Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
  • [1] A. T. Azar and S. Vaidyanathan: Advances in Chaos Theory and Intelligent Control, Springer, Berlin, Germany, 2016.
  • [2] S. Vaidyanathan and C. Volos: Advances and Applications in Chaotic Systems, Springer, Berlin, Germany, 2016.
  • [3] S. Vaidyanathan and C. Volos: Advances in Memristors, Memristive Devices and Systems, Springer, Berlin, Germany, 2017.
  • [4] A. T. Azar, S. Vaidyanathan and A. Ouannas: Fractional Order Control and Synchronization of Chaotic Systems, Springer, Berlin, Germany, 2017.
  • [5] S. Vaidyanathan: A novel chemical chaotic reactor system and its adaptive control, International Journal of ChemTech Research, textbf8(7), (2015), 146-158.
  • [6] S. Vaidyanathan: Adaptive synchronization of novel 3-D chemical chaotic reactor systems, International Journal of ChemTech Research, 8(7), (2015), 159-171.
  • [7] S. Vaidyanathan: Global chaos synchronization of chemical chaotic reactors via novel sliding mode control, International Journal of ChemTech Research, 8(7), (2015), 209-221.
  • [8] S. Vaidyanathan: Synchronization of 3-cells cellular neural network (CNN) attractors via adaptive control method, International Journal of PharmTech Research, 8(5), (2015), 946-955.
  • [9] S. Vaidyanathan: Adaptive control of the FitzHugh-Nagumo chaotic neuron model, International Journal of PharmTech Research, 8(6), (2015), 117-127.
  • [10] S. Vaidyanathan: Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control, International Journal of ChemTech Research, 8(6), (2015), 818-827.
  • [11] S. Vaidyanathan: Lotka-Volterra population biology models with negative feedback and their ecological monitoring, International Journal of PharmTech Research, 8(5), (2015), 974-981.
  • [12] S. Vaidyanathan, C. K. Volos, K. Rajagopal, I. M. Kyprianidis and I. N. Stouboulos: Adaptive backstpeping controller design for the anti-synchronization of identical WINDMI chaotic systems with unknown parameters and its SPICE implementation, Journal of Engineering Science and Technology Review, 8 (2), (2015), 74-82.
  • [13] U. Cavusoglu, A. Akgul, A. Zengin and I. Pehlivan: The design and implementation of hybrid RSA algorithm using a novel chaos based RNG, Chaos, Solitons & Fractals, 104 (2017), 655-667.
  • [14] V. Ravi, D. Pramadeepkumar and K. Deb: Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multiobjective evolutionary algorithms, Swarm and Evolutionary Computation, 36 (2017), 136-149.
  • [15] S. Khorashadizadeh and M-H. Majidi: Chaos synchronization using the Fourier series expansion with application to secure communications, AEU - International Journal of Electronics and Communications, 82 (2017), 37-44.
  • [16] L. Hawchar, C. P. El Soueidy and F. Schoefs: Principal component analysis and polynomial chaos expansion for time-variant reliability problems, Reliability Engineering and System Safety, 167 (2017), 406-416.
  • [17] K. E. Chlouverakis and J. C. Sprott: Chaotic hyperjerk systems, Chaos, Solitons and Fractals, 28 (2006), 739-746.
  • [18] B. Munmauangsaen and B. Srisuchinwong: Elementary chaotic snap flows, Chaos, Solitons and Fractals, 44 (2011), 995-1003.
  • [19] B. Bao, X. Zou, Z. Liu and F. Hu: Generalized memory element and chaotic memory system, International Journal of Bifurcation and Chaos, 22 (2013), 1350135.
  • [20] F. Y. Dalkiran and J. C. Sprott: Simple chaotic hyperjerk system, International Journal of Bifurcation and Chaos, 26 (2016), 311-318.
  • [21] S. Vaidyanathan, C. Volos, V. T. Pham and K. Madhavan: Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation, Archives of Control Sciences, 25 (2015), 135-158.
  • [22] S. Vaidyanathan: Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system via backstepping control method, Archives of Control Sciences, 26 (2016), 311-318.
  • [23] D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov and A. Prasad: Hidden attractors in dynamical systems, Physics Reports, 637 (2016), 1-50.
  • [24] M. F. Danca and N. Kuznetsov: Hidden chaotic sets in a Hopfield neural system, Chaos, Solitons & Fractals, 103 (2017), 144-150.
  • [25] J. P. Singh and B. K. Roy: Coexistence of asymmetric hidden chaotic attractors in a new simple 4-D chaotic system with curve of equilibria. Optik, 145 (2017), 209-217.
  • [26] S. T. Kingni, S. Jafari, V. T. Pham and P. Woafo: Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors, Mathematics and Computers in Simulation, 132 (2017), 172-182.
  • [27] B. C. Bao, H. Bao, N. Wang, M. Chen and Q. Xu: Hidden extreme multistability in memristive hyperchaotic system, Chaos, Solitons & Fractals, 94 (2017), 102-111.
  • [28] S.T. Kingni, V. T. Pham, S. Jafari and P. Woafo: A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form, Chaos, Solitons & Fractals, 99 (2017), 209-218.
  • [29] S. Rasappan and S. Vaidyanathan: Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control, Far East Journal of Mathematical Sciences, 67(2), (2012), 265-287.
  • [30] S. Vaidyanathan, C. K. Volos and V. T. Pham: Global chaos control of a novel nine-term chaotic system via sliding mode control, Studies in Computational Intelligence, 576 (2015), 571-590.
  • [31] S. Vaidyanathan and S. Rasappan: Hybrid synchronization of hyperchaotic Qi and Lü systems by nonlinear control, Communications in Computer and Information Science, 131 (2011), 585-593.
  • [32] A. I. Egunjobi, O. I. Olusola, A. N. Njah, S. Saha and S. K. Dana: Experimental evidence of chaos synchronization via cyclic coupling, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 588-595.
  • [33] H. Peng, X. Wang, B. Shi, S. Zhang and B. Chen: Stabilizing constrained chaotic system using a symplectic psuedospectral method, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 77-92.
  • [34] S. Vaidyanathan: Analysis, control, and synchronization of a 3-D novel jerk chaotic system with two quadratic nonlinearities, Kyungpook Mathematical Journal, 55(3), (2015), 563-586.
  • [35] S. Vaidyanathan, C. K. Volos, K. Rajagopal, I. M. Kyprianidis and I. N. Stouboulos: Adaptive backstepping controller design for the anti-synchronization of identical WINDMI chaotic systems with unknown parameters and its SPICE implementation, Journal of Engineering Science and Technology Review, 8(2), (2015), 74-82.
  • [36] S. Vaidyanathan: A new 3-D jerk chaotic system with two cubic nonlinearities and its adaptive backstepping control, Archives of Control Sciences, 27(3), (2017), 409-439.
  • [37] Q. Zhang and C. Wang: Robust adaptive backstepping control for a class of constrained non-affine nonlinear systems via self-organizing Hermitepolynomial-based neural network disturbance observer, Advances in Mechanical Engineering, 9(5), (2012), 1-12.
  • [38] S. Vaidyanathan: A novel 3-D jerk chaotic system with two quadratic nonlinearities and its adaptive backstepping control, International Journal of Control Theory and Applications, 9(1), (2016), 199-219.
  • [39] V. T. Pham, S. Jafari, C. Volos, A. Giakoumis, S. Vaidyanathan and T. Kapitaniak: A chaotic system with equilibria located on the rounded square loop and its circuit implementation, IEEE Transactions on Circuits and Systems II: Express Briefs, 63(9), (2016), 878-882.
  • [40] C. Volos, J. O. Maaita, S. Vaidyanathan, V. T. Pham, I. Stouboulos and I. Kyprianidis: A chaotic system with equilibria located on the rounded square loop and its circuit implementation, IEEE Transactions on Circuits and Systems II: Express Briefs, 64(3), (2017), 339-343.
  • [41] C. K. Volos, A. Akgul, V. T. Pham and M. S. Baptista: Antimonotonicity, crisis and multiple attractors in a simple memristive circuit, Journal of Circuits, Systems and Computers, 27(2), (2018), Article no. 1850026.
  • [42] A. Akgul, C. Li and I. Pehlivan: Amplitude control analysis of a fourwing chaotic attractor, its electronic circuit designs and microcontrollerbased random number generator, Journal of Circuits, Systems and Computers, 26(12), (2017), Article no. 1750190.
  • [43] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano: Determining Lyapunov Exponents From A Time Series, Physica D, 16 (1985), 285-317.
  • [44] Z. Vukic, L. Kuljaca, D. Donlagic and S. Tesnjak: Nonlinear Control Systems, Marcel Dekker, New York, USA, 2003.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f932bae0-e5ed-412f-87dc-c05c024ed66d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.