PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Steam condensation analysis in a power plant condenser

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Proposed is the analysis of steam condensation in the presence of inert gases in a power plant condenser. The presence of inert, noncondensable gases in a condenser is highly undesirable due to its negative effect on the efficiency of the entire cycle. In general, thermodynamics has not provided an explicit criterion for assessing the irreversible heat transfer process. The method presented here enables to evaluate precisely processes occurring in power plant condensers. This real process is of particular interest as it involves a number of thermal layers through which heat transfer is observed. The analysis was performed using a simple, known in the literature and well verified Berman’s model of steam condensation in the presence of non-condensable gases. Adapted to the geometry of the condenser, the model enables, for instance, to recognise places where non-condensable gases are concentrated. By describing with sufficient precision thermodynamic processes taking place in the vicinity of the heat transfer area segment, it is possible to determine the distributions of thermodynamic parameters on the boundaries between successive layers. The obtained results allow for the recognition of processes which contribute in varying degrees to irreversible energy degradation during steam condensation in various parts of the examined device.
Rocznik
Strony
3--32
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Marto P.J., Nunn R.H.: Power condensers heat transfer technology: Computer Modelling/Design/Fouling. Hemisphere. Washington, New York, London 1980.
  • [2] Szklowier G.G., Milman O.O.: Experimental tests and numerical calculations of steam turbine condensing systems. Eniergoatomizdat, Moscow 1985 (in Russian).
  • [3] Chmielniak T.: Power engineering technology. WPŚ, Gliwice 2004 (in Polish).
  • [4] Drozynski Z.: Entropy increase as a measure of energy degradation in heat transfer. Arch. Thermodyn. 34(2013), 3, 147–160.
  • [5] Butrymowicz D., Trela M.: Effects of fouling and inert gases on performance of recuperative feedwater heaters. Arch. Thermodyn. 23(2001), 1-2, 127–140.
  • [6] Butrymowicz D., Trela M.: Problems of condensation heat transfer in power plant heat exchangers. Trans. Inst. Fluid-Flow Mach. 113(2003), 107–118.
  • [7] Thiel G., Lienhard J.: Entropy generation in condensation in the presence of high concentrations of noncondensable gases. Int. J. Heat Mass Tran. 55(2012), 19-20, 5133–5147.
  • [8] Huiqiang Xu, Zhongning Sun, Haifeng Gu, Hao Li: Experimental study on the effect of wall-subcooling on condensation heat transfer in the presence of noncondensable gases in a horizontal tube. Ann. Nucl. Energy 90(2016), 9–21.
  • [9] Bin Ren, Li Zhang, Hong Xu, Zhenyu Tao: Experimental study on condensation of steam/air mixture in a horizontal tube. Exp. Therm. Fluid Sci. 58(2014), 145–155.
  • [10] Jafarian A., Azizi M., Forghani P.: Experimental and numerical investigation of transient phenomena in vacuum ejectors. Energy 102(2016), 528–536.
  • [11] Colburn A., Houges O.: Design of cooler condensers for mixture of vapour with noncondensing gases. Ind. Eng. Chem. 26(1934), 11, 1178–1182.
  • [12] Berman L.D., Fuks S.N.: Mass transfer in condensers with horizontal tubes in the presence of air in the steam. Tieploeniergetika 5(1958), 8, 66–74 (in Russian).
  • [13] Berman L.D., Fuks S.N.: Calculations of surface heat exchangers for steam condensation from steam-air mixture. Teploenergetika 7(1959), 6, 74–84 (in Russian).
  • [14] Berman C.C.: Calculations of turbine heat exchangers. National Energy Publishers, Moscow 1962 (in Russian).
  • [15] Berman L.D., Tumanov V.A.: Investigation of heat transfer during the condensation of flowing steam on horizontal tube bundle. Teploenergetika 10(1962), 9, 77–83, (in Russian).
  • [16] Berman L.D.: Approximation method of heat transfer in steam condensation calculations on horizontal tube bundle. Teploenergetika 12(1964), 3,74–78 (in Russian).
  • [17] Berman L.D.: Heat transfer in steam condensation in around horizontal tube flow, convective heat transfer in one and multiphase flow. Energia (1964), 7–53 (in Russian).
  • [18] Berman L.D.: Determining the mass transfer coefficient in calculations on condensation of steam containing air. Teploenergetika 16(1968), 66–71 (in Russian).
  • [19] Berman L.D.: Influence of velocity on heat transfer in steam condensation around horizontal tube. Teploenergetika 5(1979), 16–20 (in Russian).
  • [20] Rusowicz A.: Numeric simulation of condenser power plant 50 MW. Arch. Energ., XXXVI(2006).
  • [21] Grzebielec A., Rusowicz A.: Thermal resistance of steam condensation in horizontal tube bundles. J. Power Technologies 91(2011), 1, 41–48.
  • [22] Trela M., Butrymowicz J. et al.: Monitoring of air content in a mixture removed from condensers in application to steam turbine diagnostics. In: Proc. Int. Joint Power Generation Conf. Miami Beach 2000.
  • [23] Drozynski Z.: Phenomenological model of steam condensation containing noncondensable gases on a single non-inundated tube. Arch. Thermodyn. 27(2006), 4, 67–78.
  • [24] Strušnik D., Golob M., Avsec J.: Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes. Energ. Convers. Manage. 126(2016), 228–246.
  • [25] Nusselt W.: Die oberflachenkondensation des wasserdampfes., Vereins Deutcher Ing., 1916.
  • [26] Wisniewski S, Wisniewski T.: Heat Transfer. WNT, Warszawa 2000.
  • [27] Briggs A., Sabaratnam S.: Condensation from pure steam-air mixtures on integral fin tubs in a bank. J. Heat Transfer 127(2005), 6, 571–580.
  • [28] Haseli Y., Dincer I., Naterer G.F.: Entropy generation of vapour condensation in the presence of a non condensable gas in a shell and tube condenser. Int. J. Heat Mass Tran. 51(2008), 7–8, 1596–1602.
  • [29] Haseli Y., Naterer G.F., Dincer I.: Thermal effectiveness of a shell and tube condenser with effects of non-condensing gas leakage. In: Proc. 40th AIAA Thermophysics Conf., Seattle, June 23-26, 2008.
  • [30] Clausius R.: Ueber die bewegende Kraft der Waerme und die Gesetze, welche sich daraus fuer die Waermelehre selbst ableiten lassen. Pogendorff Annalen, Tyndall j., Phil. Mag. 1851.
  • [31] Bejan A.: Advanced Engineering Thermodynamics. J. Wiley & Sons, New York 1988.
  • [32] Bejan A.: Entropy generation minimization, exergy analysis, and the constructal law arab. J. Sci. Eng. 38(2013), 329–340.
  • [33] Haseli Y., Dincer I., Naterer G.: Entropy generation of vapour condensation in the presence of a non-condensable gas in a shell and tube condenser. Int. J. Heat Mass Tran. 51(2007), 7–8, 1596–1602.
  • [34] Galovic A., Virag Z., Zivic M.: Analytical entropy analysis of recuperative heat exchanger. Entropy 5(2003), 482–495.
  • [35] Ocheduszko S.: Applied Thermodynamics. WNT, Warszawa 1970.
  • [36] Klein S., Nellis G.: Thermodynamics. Cambridge University Press, 2012.
  • [37] Borgnake C., Sonntag R.: Fundamentals of Thermodynamics. Wiley, 2013.
  • [38] Wenterodt T., Redecker C., Herwig H.: Second law analysis for sustainable heat and energy transfer: The entropic potentials concept. Appl. Energy 139(2015), 376–383.
  • [39] Narayan G.P., Lienhard J.H., Zabir S.M.: Entropy generation minimization of combined heat and mass transfer devices. Int. J. Therm. Sci. 49(2010), 10, 2057–2066.
  • [40] Briggs A., Sabaratnam S.: Condensation of steam in the presence of air on a single tube and a tube bank. Int. J. Energ. Res. 27(2003), 4, 301–314.
  • [41] Briggs A., Sabaratnam S.: Condensation from pure steam-air mixtures on integral –fin tubs in a bank. J. Heat Transfer 127(2004), 6, 571–580.
  • [42] Rusowicz A., Laskowski R., Grzebielec A.: The numerical and experimental study of two passes power plant condenser. Therm. Sci. 21(2017), 1A, 353–362.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f913aa2f-bd94-4bbf-8780-e7f6b9120858
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.