PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study on the optimization of hydrodynamic performance of oscillating buoy wave energy converter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The oscillating buoy wave energy converter (OBWEC) captures wave energy through the undulating movement of the buoy in the waves. In the process of capturing wave energy, the hydrodynamic performance of the buoy plays an important role. This paper designed the “Haida No. 1” OBWEC, in which the buoy adopts a form of swinging motion. In order to further improve the hydrodynamic performance of the buoy, a 2D numerical wave tank (NWT) model is established using ADINA software based on the working principle of the device. According to the motion equation of the buoy in the waves, the influence of the buoy shape, arm length, tilt angle, buoy draft, buoy width, wave height and Power Take-off (PTO) damping on the hydrodynamic performance of the buoy is studied. Finally, a series of physical experiments are performed on the device in a laboratory pool. The experimental results verify the consistency of the numerical results. The research results indicate that the energy conversion efficiency of the device can be improved by optimizing the hydrodynamic performance of the buoy. However, the absorption efficiency of a single buoy for wave energy is limited, so it is very difficult to achieve full absorption of wave energy.
Rocznik
Tom
Strony
48--58
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Zhejiang Ocean University Dinghai, 316022 Zhoushan China
autor
  • Zhejiang Ocean University Dinghai, 316022 Zhoushan China
autor
  • Zhejiang Ocean University Dinghai, 316022 Zhoushan China
Bibliografia
  • 1. Panwar, N.L., S.C. Kaushik, and S. Kothari. ‘Role of renewable energy sources in environmental protection: A review Renewable and Sustainable Energy’, Reviews. 2011, doi: 10.1016/S1364-0321(99)00011-8.
  • 2. Ellabban, O., H. Abu-Rub, and F. Blaabjerg. ‘Renewable energy resources: Current status, future prospects and their enabling technology’, Renewable and Sustainable Energy Reviews. 2014, doi: 10.1016/j.rser.2014.07.113.
  • 3. Zheng, C.W., Q. Wang, and C.Y. Li. ‘An overview of medium-to long-term predictions of global wave energy resources’, Renewable and Sustainable Energy Reviews. 2017, doi: 10.1016/j.rser.2017.05.109.
  • 4. Astariz, S., and G. Iglesias. ‘The economics of wave energy: A review’, Renewable and Sustainable Energy Reviews. 2015, doi: 10.1016/j.rser.2015.01.061.
  • 5. Rosa-Santos, P., et al. ‘The CECO wave energy converter: Recent developments’, Renewable Energy. 2019, doi: 10.1016/j.renene.2019.02.081.
  • 6. Zou, S., et al. ‘Optimal control of wave energy converters’, Renewable Energy. 2017, doi: 10.1016/j.renene.2016.11.036.
  • 7. Zhang, W., and Y. Liu. ‘Simulation and experimental study in the process of wave energy conversion’, Polish Maritime Research. 2016, doi: 10.1515/pomr-2016-0056.
  • 8. Sheng, W. ‘Wave energy conversion and hydrodynamics modelling technologies: A review’, Renewable and Sustainable Energy Reviews. 2019, doi: 10.1016/j.rser.2019.04.030.
  • 9. Rusu, E., and F. Onea. ‘A review of the technologies for wave energy extraction’, Clean Energy. 2018, doi: 10.1093/ ce/zky003.
  • 10. Cordonnier, J., et al. ‘SEAREV: Case study of the development of a wave energy converter’, Renewable Energy. 2015, doi: 10.1016/j.renene.2015.01.061.
  • 11. Zanuttigh, B., E. Angelelli, and J.P. Kofoed. ‘Effects of mooring systems on the performance of a wave activated body energy converter’, Renewable Energy. 2013, doi: 10.1016/j.renene.2013.02.006.
  • 12. Sjolte, J., et al. ‘Summary of performance after one year of operation with the lifesaver wave energy converter system’, 10th European Wave and Tidal Energy Conference, Aalborg, Denmark, 2013.
  • 13. Neary, V.S., et al. ‘Classification systems for wave energy resources and WEC technologies’, International Marine Energy Journal. 2018, doi: 10.36688/imej.1.71-79.
  • 14. De Andrés, A.D., et al. ‘Analysis of the geometric tunability of a WEC from a worldwide perspective’, International Conference on Offshore Mechanics and Arctic Engineering. Vol. 45530. American Society of Mechanical Engineers, 2014.
  • 15. Bedard, R., and G. Hagerman. ‘E2I EPRI assessment offshore wave energy conversion devices’, Electrical Innovation Institute: Washington, DC, USA, 2004.
  • 16. Haraguchi, R., and T. Asai. ‘Enhanced power absorption of a point absorber wave energy converter using a tuned inertial mass’, Energy. 2020, doi: 10.1016/j.energy.2020. 117740.
  • 17. Homayoun, E., H. Ghassemi, and H. Ghafari. ‘Power performance of the combined monopile wind turbine and floating buoy with heave-type wave energy converter’, Polish Maritime Research. 2019, doi: 10.2478/pomr-2019-0051.
  • 18. Lai, W., D. Li, and Y. Xie. ‘Simulation and experimental study of hydraulic cylinder in oscillating float-type wave energy converter’, Polish Maritime Research. 2020, doi: 10.2478/ pomr-2020-0024.
  • 19. Sjolte, J., et al. ‘Exploring the potential for increased production from the wave energy converter lifesaver by reactive control’, Energies. 2013, doi: 10.3390/en6083706.
  • 20. Han, Z., Z. Liu, and H. Shi. ‘Numerical study on overtopping performance of a multi-level breakwater for wave energy conversion’, Ocean Engineering. 2018, doi: 10.1016/j. oceaneng.2017.12.058.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9127021-d4fa-4ee2-b762-1c6d12c4624b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.