Identyfikatory
Warianty tytułu
Ocena nowych bioaktywnych włóknin do ochrony układu oddechowego
Języki publikacji
Abstrakty
Legal regulations concerning protecting workers threatened with biological factors in the workplace and the global threat of terrorist attacks influence the need to master the properties of protective equipment and the methods of its evaluation. The article presents an approach to nonwovens with biocidal properties designed for respiratory protection devices (RPD) against bioaerosols. It was assumed that these materials should fulfil two basic criteria – high efficiency of filtration against bioaerosols and have the ability to destroy microorganisms blocked in the nonwoven. An experimental setup that enabled to control the flow of bioaerosol by a sample of nonwovens was created, making it possible to also evaluate the efficiency of filtration by applying a particle counter. Microorganisms with an aerodynamic diameter of ≤ 1.0 µm and various shape were selected for the study, all belonging to two aerobic types of gram positive (+) and gram negative (-) bacteria. The measurement was based on bioaerosol flow through a filter with a diameter of 80 mm, at a volumetric flow rate of 30 l/min, for 15 minutes. Tightly sealed filters were stored for 2, 4 and 8 hours at a temperature of 37 °C. In order to evaluate bacteria survival after contact with the bioactive nonwoven, they were rinsed and shaken for 15 minutes in a shaker at a frequency of rotation of 150 c.p.m. After dilution in sterile saline, microorganisms were seeded on a sterile Petrie’s dish. They were later incubated at a temperature of 37 °C for 24 hours, after which time the colonies grown were counted. Applying the method discussed, the efficiency of filtration against aerosol was confirmed as well as the bioactivity of meltblown nonwovens made from poly (lactic acid PLA) modified with a biocidal compound.
Uregulowania prawne w zakresie ochrony pracowników narażonych na czynniki biologiczne w środowisku pracy oraz powszechna groźba ataków terrorystycznych wpływają na potrzebę doskonalenia właściwości sprzętu ochronnego i metod jego oceny. Artykuł prezentuje podejście do oceny włóknin o cechach biobójczych, przeznaczonych do ochrony układu oddechowego przed bioaerozolem. Założono, że materiały te powinny spełniać jednocześnie dwa podstawowe kryteria – wysoką skuteczność filtracji wobec bioaerozolu oraz zdolność do niszczenia mikroorganizmów zatrzymanych w materiale włókninowym. Zaprojektowano i wykonano stanowisko umożliwiające kontrolowany przepływ bioaerozolu przez próbkę włókniny i ocenę skuteczności filtracji z zastosowaniem licznika cząstek. Do badań wytypowano mikroorganizmy o średnicy aerodynamicznej ≤ 1,0 µm, o różnym kształcie, należące do dwóch grup bakterii tlenowych Gram dodatnie (+) i Gram ujemne (-). Pomiar polegał na przepływie bioaerozolu przez filtr o średnicy 80 mm, z objętościowym natężeniem przepływu 30 l/min, przez 15 minut. Szczelnie zamknięte filtry przechowywano w czasie 2, 4 i 8 godzin w temp. 37 °C. W celu oceny przeżywalności mikroorganizmów po kontakcie z bioaktywną włókniną wypłukano i wstrząsano mikroorganizmy w czasie 15 minut na strząsające o częstotliwości obrotów 150 obrotów na minutę. Po rozcieńczeniu w sterylnej soli fizjologicznej mikroorganizmy wysiewano na jałową płytkę Petriego. Wysiewy inkubowano w temp. 37 °C w czasie 24 godzin i po tym czasie liczono wyrosłe kolonie. Wykorzystując omówioną metodę potwierdzono skuteczność filtracji wobec bioaerozolu i biobójczość włóknin melt-blown z poli (kwasu mlekowego) (PLA) modyfikowanych związkiem biobójczym.
Słowa kluczowe
Czasopismo
Rocznik
Strony
81--88
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- Poland, Łódź, Central Institute for Labour Protectionp - National Research Institute, Department of Personal Protective Equipment
Bibliografia
- 1. Rengasamy A, Zhuang Z, Berryann R. Respiratory protection against bioaerosols: literature review and research needs. Am. J. Infect. Control. 2004; 32,6: 345-354.
- 2. Brosseau LM, McCullough NV, Vesley D. Bacterial survival on respirator filters and surgical masks. J. Am. Biol. Saf. Assoc. 1997; 2: 32-43.
- 3. Reponen TA, Wang Z, Willeke K, Grinshpun SA. Survival of mycobacteria on N95 personal respirators. Infect. Control. Hosp. Epidemiol. 1999; 20: 237-241.
- 4. Wang K, Reponen TA, Willeke K. Survival of bacteria on respirator filters. Aerosol. Sci. Tech. 1999; 30: 167-173.
- 5. Downie AW, Dumbell KR. Survival of variola virus in dried exudates and crusts from smallpox patients. Lancet 1947; I: 550-553.
- 6. Wolff HL, Croon JJAB, The survival of smallpox (Variola major) in natural circumstances. Bulletin of World Health Organization 1968; 38:492-493.
- 7. Irzmańska E, Brochocka A, Majchrzycka K. Textile composite materials with bioactive melt-blown nonwovens for protective footwear. Fibres & Textiles in Eastern Europe 2012; 20: 119-125. 8. Gutarowska B, Brycki B, Majchrzycka
- K, Brochocka A. New bioactive polimer filtering material composed of nonwoven polypropylene cointaing alkylammonium microbiocides on a perlite cartier. Polimery 2010; Vol. LV: 568-574.
- 9. Brochocka A, Majchrzycka K. Technology for the Production of Bioactive Meltblown Filtration Materials Applied to Respiratory Protective Devices. Fibres & Textiles in Eastern Europe 2009; 17: 92-98.
- 10. Krucińska I, Strzembosz W, Majchrzycka K, Brochocka A, Sulak K. Biodegradable Particle Filtering Half Masks for Respiratory Protection. Fibres & Textiles in Eastern Europe 2012; 6B, 96: 77-83.
- 11. Baron PA, Willeke K. Aerosol fundamentals. In: Willeke K, Baron PA. (Eds.) Aerosol measurement: principles, techniques and applications, New York: Van Nostrand Reinhold, 1995: 8-22.
- 12. Cox CS. Physical aspects of bioaerosol particles. In: Cox CS, Wathes CM. (Eds.) Bioaerosol handbook. New York: Lewis Publishers, 1995: 15-26.
- 13. Hinds WC. Introduction. In: Hinds WC. (Ed.) Aerosol technology: properties, behavior, and measurement of airborne particles, New York: Wiley-Interscience Publication, John Wiley & Sons, 1998, pp. 1-14.
- 14. European standard EN 13274-7: 2008. Respiratory protective devices. Methods of test. Part 7: Determination of particle filter penetration.
- 15. European standard EN 13274-3:2001. Respiratory protective devices. Methods of test. Part 3: Determination of breathing resistance.
- 16. Barnhart S, Sheppard L, Beaudet N, Stover B, Balmes J. Tuberculosis in health care seattings and the estimated benefits of engineering controls and respiratory protection. J. Occup. Environ. Med. 1997; 39: 849-854.
- 17. Lacey J, Nabb S, Webster B. Retention of actionomycete spores by respirator filters. Ann. Occup. Med. 1982; 25: 351- 363.
- 18. Johnson B, Martin DD, Resnick IG. Efficiency of selected respiratory protection equipment challenged with Bacillus subtilis ss niger. Appl. Envir. Microbiol. 1994; 60: 2184-2186.
- 19. Brosseau LM, McCullough NV, Vesley D. Mycobacterial aerosol collection efficiency of respirator and surgical mask filters under varying conditions of flow and humidity. Appl. Occup. Environ. Hyg. 1997; 12: 435-445.
- 20. Willeke K, Qian Y, Donelly J. Penetration of airborne microorganisms through a surgical mask and a dust/ mist respirator. Am. Indust. Hyg. Assoc. J. 1996; 4: 348-355.
- 21. Wake D, Bowry A, Crook B, Brown R. Performance of respirator filters and surgical masks against bacterial aerosols. J. Aerosol. Sci. 1997; 28: 1311-1329.
- 22. Maus R, Umhauer H. Collection efficiences of coarse and fine dust filter media for airborne biological particles. J. Aerosol. Sci. 1997; 28: 401-415. 23. Miaśkiewicz-Peska E, Łebkowska M. Effect of antimicrobial air filter treatment on bacterial survival. Fibres & Textiles in Eastern Europe 2011; 19: 73-77.
- 24. Salvatorelli G, Lorenzi S, Finzi G, Romanini L. Evaluation of a new devices against bacterial penetration. International Journal of Disaster Medicine 2006; 4: 103-109. 25. European standard EN 143:2000, EN 143:2000/A1:2006: Respiratory protec tive devices – Particle filters – Requirements, testing, marking.
- 25. European standard EN 143:2000, EN 143:2000/A1:2006: Respiratory protec tive devices – Particle filters – Requirements, testing, marking.
- 26. European standard EN 149:2001+A1: 2009: Respiratory protective devices – Filtering half masks to protect against particles – Requirements, testing, marking.
- 27. Majchrzycka K, Gutarowska B, Brochocka A. Aspects of Tests and Assessment of Filtering Materials Used for Respiratory Protection Against Bioaerosol. Part I. Type of Active Substance, Contact Time, Microorganism Species. JOSE 2010; 2: 129-280.
- 28. Majchrzycka K, Gutarowska B, Brochocka A. Aspects of Tests and Assessment of Filtering Materials Used for Respiratory Protection Against Bioaerosol. Part II. Sweat in Environment, Microorganisms in the Form of a Bioaerosol. JOSE 2010; 2: 129-280.
- 29. Technical University of Łódź, Central Institute of Labour Protection – PIB, FILTER-SERVICE Sp. Z o.o., Patent PL 211 878, 2011. The biocidal agent for the production of nonwoven and a method of preparing a biocide for the production of nonwoven. Brycki B, Gutarowska B, Majchrzycka K, Brochocka A, Orlikowski W, Krucińska I, Gliścińska E, Krzyżanowski J, Łysiak I.
- 30. Majchrzycka K, Brochocka A. Modyfication of biodegradable filtering nonwovens with a biocidal agent (in Polish). Przetwórstwo Tworzyw 2013; 3, 153: 217-222.
- 31. Majchrzycka K, Gutarowska B, Brochcka A., Brycki B. New filtering antimicrobial nonwoven with various carriers for biocides as respiratory protective materials against bioaerosols. JOSE 2012; 18, 3: 375-385.
- 32. Górny R. The particles of fungi and bacteria on indoor air quality: characteristics, mechanisms of emission, detection. Institute of Occupational Medicine and Environmental Health, Sosnowiec (in Polish),
- 33. PN-EN 1276:2000/Ap1:2001 Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic and institutional areas (Phase 2, step 1). Test methods and requirements.
- 34. Qian Y, Willeke K, Grinshpun SA, Donnelly J, Coffey CC. Performance of N95 respirators: filtration efficiency for airborne microbial and inert particles. Am. Indust. Hyg. Assoc. 1998; 59: 128-132.
- 35. McCullough NV, Brosseau LM, Vesley D. Collection of three bacterial aerosols by respirator and surgical mask filters under varying conditions of flow and relative humidity. Ann Occup Hyg, 1997; 41: 677-690.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f90bf8d6-3f69-44e3-8480-c1fbd0dfe0b3