Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove uniqueness of positive solutions for the problem−Δpu = λf(u) in Ω, u = 0 on ∂Ω, where 1 < p < 2 and p is close to 2, Ω is bounded domain in Rn with smooth boundary ∂Ω, f : [0,∞) → [0,∞) with f(z) ∼ zβ at ∞ for some β ∈ (0, 1), and λ is a large parameter. The monotonicity assumption on f is not required even for u large.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Mississippi State University, Department of Mathematics and Statistics, Mississippi State, MS 39762, USA
autor
- Mississippi State University, Department of Mathematics and Statistics, Mississippi State, MS 39762, USA
Bibliografia
- [1] A. Alsaedi, V.D. Radulescu, B. Ahmad, Bifurcation analysis for degenerate problems with mixed regime and absorption, Bull. Math. Sci. 11 (2021), Paper no. 2050017.
- [2] H. Brezis, Analyse fonctionnelle, théorie et applications, 2nd ed., Masson, Paris, 1983 [in French].
- [3] H. Brezis, L. Oswald, Remark on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55–64.
- [4] S. Chen, C.A. Santos, M. Yang, J. Zhou, Bifurcation analysis for a modified quasilinear equation with negative exponent, Adv. Nonlinear Anal. 11 (2022), no. 1, 684–701.
- [5] K.D. Chu, D.D. Hai, R. Shivaji, Uniqueness for a class of singular quasilinear Dirichlet problem, Appl. Math. Lett. 106 (2020), 106306.
- [6] P.T. Cong, D.D. Hai, R. Shivaji, A uniqueness result for a class of singular p-Laplacian Dirichlet problem with non-monotone forcing term, Proc. Amer. Math. Soc. 150 (2021), 633–637.
- [7] E.N. Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal. 8 (1984), 835–836.
- [8] E.N. Dancer, On the number of positive solutions of semilinear elliptic systems, Proc. London Math. Soc. 53 (1986), 429–452.
- [9] J.I. Díaz, J.E. Saa, Existence et unicité de solutions positives pur certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris 305 (1987), 521–524.
- [10] P. Drábek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 (2001), 189–204.
- [11] Z. Guo, J.R.L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh 124 (1994), 189–198.
- [12] D.D. Hai, Uniqueness of positive solutions for a class of quasilinear problems, Nonlinear Anal. 69 (2008), 2720–2732.
- [13] B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math. 410 (1990), 1–22.
- [14] G.M. Lieberman, Boundary regularity for solutions of degenerate quasilinear elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219.
- [15] S.S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), 283–297.
- [16] S.S. Lin, Some uniqueness results for positone problems when a parameter is large, Chinese J. Math. 13 (1985), 67–81.
- [17] T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1986.
- [18] N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257–278.
- [19] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis – Theory and Methods, Springer Monographs in Mathematics, Cham, 2019.
- [20] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. 136 (2020), 1–21.
- [21] S. Sakaguchi, Concavity properties of solutions of some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 403–421.
- [22] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f909c55c-7052-443b-9074-a5912eafaa3d