UNIQUENESS FOR A CLASS p-LAPLACIAN PROBLEMS WHEN A PARAMETER IS LARGE

B. Alreshidi and D.D. Hai

Communicated by Vicențiu D. Rădulescu

Abstract. We prove uniqueness of positive solutions for the problem

$$-\Delta_p u = \lambda f(u)$$
 in Ω , $u = 0$ on $\partial \Omega$,

where 1 and <math>p is close to 2, Ω is bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$, $f:[0,\infty)\to[0,\infty)$ with $f(z)\sim z^{\beta}$ at ∞ for some $\beta\in(0,1)$, and λ is a large parameter. The monotonicity assumption on f is not required even for u large.

Keywords: singular *p*-Laplacian, uniqueness, positive solutions.

Mathematics Subject Classification: 35J92, 35J75.

1. INTRODUCTION

In this paper, we investigate uniqueness of positive solutions to the p-Laplacian BVP

$$\begin{cases}
-\Delta_p u = \lambda f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.1)

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u), 1 , <math>\Omega$ is a bounded domain in \mathbb{R}^n with boundary $\partial\Omega$, λ is a positive parameter, and $f:[0,\infty)\to[0,\infty)$ is p-sublinear at ∞ . It is well-known that (1.1) has a unique positive solutions for all $\lambda>0$ if f is

continuous on $[0,\infty)$ and $\frac{f(u)}{u^{p-1}}$ is strictly decreasing on $(0,\infty)$ (see the pioneering work [3] for p=2 and [9,10] for its extension to p>1). When the latter condition is not satisfied, there is a number of uniqueness results for (1.1) when the parameter λ is large (see e.g. [5–8,11,12,15,16] and the references therein). We are motivated by the uniqueness results in [7,8,15,16] for p=2 and f smooth with f(u)>0 for u>0. In [15], Lin proved uniqueness of positive solutions to (1.1) when $f(u)\sim u^{\beta}$ for some $\beta\in(0,1)$, $\limsup_{u\to\infty}\frac{uf'(u)}{f(u)}<1$, and $\limsup_{u\to0^+}u^2|f'(u)|<\infty$. The case when f is bounded was discussed in [8] and [16], where $f(u)\to C>0$ as $u\to\infty$ and either f(0)>0 or f'(0)>0 in [8], and $\limsup_{u\to\infty}\frac{f(u)}{u}=0$, $\inf_{[0,\infty)}f>0$ together with $\liminf_{u\to\infty}f(u)>\limsup_{u\to\infty}uf'(u)$ in [16]. Note that in these references, the

nonlinearity f is not required to be increasing or decreasing even for u large. For p > 1, uniqueness results for (1.1) were obtained in [5, 6, 11, 12] for λ large under the p-sublinear assumption together with some monotonicity conditions on f. In this paper, we will provide a uniqueness result in the absence of this common monotonicity requirement when $1 and p is close to 2, <math>f(u) \sim u^{\beta}$ at ∞ for some $\beta \in (0,1)$ together with some natural conditions at 0 and ∞ . Thus our result provides an extension of the work in [7,8,15,16] from p=2 to $p\in(1,2)$ with $p\sim2$, which seems to be the first in the literature. In particular, when applied to the model example $f(u) = u^{\beta} + \sin^2(u^{\beta})$, where $\beta \in (0,1)$, Theorem 1.1 below gives uniqueness of positive solutions to (1.1) provided λ is large and p < 2 is close to 2. A calculation shows that f(u) is neither increasing nor decreasing even for u large. We refer to the recent monograph [19] for the abstract results used in this paper, and to [1,4,18-20] for the analysis of related nonlinear problems.

We make the following assumptions:

- (A_1) $f:[0,\infty)\to[0,\infty)$ is continuous and of class C^1 on $(0,\infty)$ with f(u)>0for u > 0.
- (A₂) There exists a constant $\beta \in (0,1)$ such that $\lim_{u \to \infty} \frac{f(u)}{u^{\beta}} = 1$.

- $\begin{array}{ll} \text{(A_3)} & \limsup_{u \to \infty} \frac{uf'(u)}{f(u)} < 1. \\ \text{(A_4)} & \liminf_{u \to 0^+} \frac{f(u)}{u^{p-1}} > 0. \\ \text{(A_5)} & \text{There exists } \alpha \in (0,1) \text{ such that } \limsup_{u \to 0^+} u^{\alpha+1} |f'(u)| < \infty. \end{array}$

By a positive solution of (1.1), we mean a function $u \in C^{1,\nu}(\bar{\Omega})$ for some $\nu \in (0,1)$ with u > 0 in Ω and satisfying (1.1) in the weak sense.

Our main result is the following.

Theorem 1.1. Let $1 and <math>(A_1)$ – (A_5) hold. Then if p is sufficiently close to 2, there exists a constant $\lambda_0 > 0$ such that (1.1) has a unique positive solution for $\lambda > \lambda_0$.

Remark 1.2. (i) Theorem 1.1 is not true for $\lambda > 0$ small. Indeed, let $\alpha, \beta \in (0,1)$ and

$$f(u) = \begin{cases} u^{p-1}e^{a(1-u)} & \text{for } u \in (0,1), \\ u^{\beta} & \text{for } u \ge 1, \end{cases}$$

where $a = p - 1 - \beta$. Note that a > 0 if p is sufficiently close to 2. Then (A_1) – (A_5) hold. Suppose u is a positive solution of (1.1) with $\lambda < \lambda_1 e^{\beta-1}$, where λ_1 denotes the first eigenvalue of $-\Delta_p$ with Dirichlet boundary condition. Since $a \leq 1 - \beta$, $f(u) \leq e^{1-\beta}u^{p-1}$ for all $u \geq 0$. Hence, multiplying the equation in (1.1) by u and integrating, we get

$$\int\limits_{\Omega} |\nabla u|^p dx \le \lambda e^{1-\beta} \int\limits_{\Omega} u^p dx < \lambda_1 \int\limits_{\Omega} u^p dx,$$

a contradiction with

$$\lambda_1 = \inf_{\substack{v \in W_0^{1,p}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega} |\nabla v|^p dx}{\int_{\Omega} |v|^p dx}.$$

Hence, (1.1) has no positive solution for λ small.

(ii) Theorem 1.1 gives uniqueness of positive solutions to (1.1) when

$$\lim \sup_{u \to \infty} \frac{uf'(u)}{f(u)}$$

where $p \in (1,2)$ and is sufficiently close to 2 without requiring any monotonicity of f. We believe that without any monotonicity assumption, uniqueness for (1.1) for λ large under conditions (1.2) and (A₁), (A₂), (A₄), (A₅) for other values of p is an open question. Note that a uniqueness result under these conditions together with the additional assumption that f is nondecreasing on $[0, \infty)$ was obtained in [12].

2. PRELIMINARIES

In what follows, we denote by d(x) the distance from x to the boundary $\partial\Omega$. Let λ_1 be the first eigenvalue of $-\Delta_p$ with Dirichlet boundary conditions, and ϕ_1 the corresponding positive normalized eigenfunction, i.e. $\|\phi_1\|_{\infty} = 1$.

Lemma 2.1. Let $h:[0,\infty)\to[0,\infty)$ be nondecreasing and D be an open set in Ω . Suppose there exists $q\in(0,p-1)$ such that $u^{-q}h(u)$ is nonincreasing on $(0,\infty)$ and $\liminf_{u\to 0^+}u^{1-p}h(u)>0$. Let $g:\Omega\to[0,\infty)$ be bounded in Ω . Then the problem

$$-\Delta_p u = \begin{cases} h(u) & \text{in } D, \\ g(x) & \text{in } \Omega \backslash D, \end{cases} \quad u = 0 \text{ on } \partial\Omega$$
 (2.1)

has a positive solution $\phi_D \in C^1(\bar{\Omega})$ with $\inf_{\Omega} \frac{\phi_D}{d} > 0$. Furthermore,

(i) $\phi_D \to \omega_p$ in $C^1(\bar{\Omega})$ as $|\Omega \backslash D| \to 0$, where ω_p is the solution of

$$-\Delta_n u = h(u) \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega. \tag{2.2}$$

and |A| denotes the Lebesgue measure of A;

(ii) Let $h(u) = u^{\beta}$ for some $\beta \in (0,1)$. Then $\omega_p \to \omega_2$ in $C^1(\bar{\Omega})$ as $p \to 2$, p < 2.

Proof. We first show that the problem

$$\begin{cases}
-\Delta_p u = h(u) + g(x) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$
(2.3)

has a positive solution by the method of sub- and supersolutions.

Clearly the function ω_p defined in (2.2) is a subsolution of (2.3). Note that the existence and uniqueness of ω_p follows from [9,10].

Let $\psi \in C^1(\bar{\Omega})$ satisfy

$$-\Delta_p \psi = 1 \text{ in } \Omega, \quad \psi = 0 \text{ on } \partial\Omega.$$
 (2.4)

Then

$$-\Delta_p(M\psi) = M^{p-1} \ge M^q h(\psi) + g(x) \ge h(M\psi) + g(x) \text{ in } \Omega$$

for M large since h is nondecreasing with $u^{-q}h(u)$ decreasing, q < p-1, and g is bounded in Ω . Thus $M\psi$ is a supersolution of (2.3) with $M\psi \ge \omega_p$ in Ω for M large. Hence, (2.3) has a solution $\bar{\psi} \in C^1(\bar{\Omega})$ with $\omega_p \le \bar{\psi} \le M\psi$ in Ω . Next, we show that the problem

$$-\Delta_p u = \begin{cases} h(u) & \text{in } D, \\ 0 & \text{in } \Omega \backslash D, \end{cases} \quad u = 0 \text{ on } \partial\Omega$$
 (2.5)

has a positive solution. Let ψ_0 be the solution of

$$-\Delta_p u = \begin{cases} \lambda_1 \phi_1^{p-1} & \text{in } D, \\ 0 & \text{in } \Omega \backslash D, \end{cases} \quad u = 0 \text{ on } \partial \Omega.$$

By the strong maximum principle [22], $\inf_{\Omega} \frac{\psi_0}{\phi_1} \ge m_1$ for some $m_1 \in (0,1)$. Since $\liminf_{u\to 0^+} u^{1-p}h(u) > 0$, $\inf_{u\in(0,1]} u^{1-p}h(u) = m_0 > 0$. Hence

$$h(\varepsilon\psi_0) \ge h(\varepsilon m_1\phi_1) \ge (\varepsilon m_1)^q h(\phi_1) \ge (\varepsilon m_1)^q m_0 \phi_1^{p-1}$$

$$\ge \lambda_1 (\varepsilon\phi_1)^{p-1} = -\Delta_p(\varepsilon\psi_0) \text{ in } D$$

for ε small. Thus $\varepsilon\psi_0$ is a subsolution of (2.5). Since ω_p is a supersolution of (2.5) with $\omega_p \geq \varepsilon\psi_0$ in Ω for ε small, it follows that (2.5) has a solution ψ_1 with $\varepsilon\psi_0 \leq \psi_1 \leq \omega_p$ in Ω . Clearly ψ_1 and $\bar{\psi}$ are sub- and supersolution of (2.1) respectively with $\psi_1 \leq \omega_p \leq \bar{\psi}$ in Ω , and the existence of a solution $\phi_D \in C^1(\bar{\Omega})$ with $\inf_{\Omega} \frac{\phi_D}{d} > 0$ follows.

(i) Let M > 0 be such that

$$g(x) \leq M$$

for $x \in \Omega$. Then

$$-\Delta_p(\phi_D) \le h(\|\phi_D\|_{\infty}) + M \text{ in } \Omega,$$

which implies by the maximum principle that

$$-\Delta_p\left(\frac{\phi_D}{(h(\|\phi_D\|_{\infty})+M)^{\frac{1}{p-1}}}\right) \le 1 \text{ in } \Omega.$$

This implies $\phi_D \in C^{1,\nu}(\bar{\Omega})$ for some $\nu \in (0,1)$ and there exists a constant $M_1 > 0$ independent of ϕ_D such that

$$|\phi_D|_{C^{1,\nu}} \le M_1(h(\|\phi_D\|_{\infty}) + M)^{\frac{1}{p-1}} \le M_1(h(|\phi_D|_{C^{1,\nu}}) + M)^{\frac{1}{p-1}}.$$

In particular,

$$\frac{h(|\phi_D|_{C^{1,\nu}})+M}{|\phi_D|_{C^{1,\nu}}^{p-1}} \ge \frac{1}{M_1^{p-1}}.$$

Since $\lim_{t\to\infty}\frac{h(t)+M}{t^{p-1}}=0$, there exists a constant $M_2>0$ independent of D such that $|\phi_D|_{C^{1,\nu}}\leq M_2$. Let (D_n) be a sequence of open sets in Ω such that $|\Omega\setminus D_n|\to 0$ as $n\to\infty$, and let $\phi_n\equiv\phi_{D_n}$. Then for $\xi\in W_0^{1,p}(\Omega)$,

$$\int_{\Omega} |\nabla \phi_n|^{p-2} \nabla \phi_n \cdot \nabla \xi dx = \int_{D_n} h(\phi_n) \xi dx + \int_{\Omega \setminus D_n} g \xi dx.$$
 (2.6)

Since $|\phi_n|_{C^{1,\nu}} \leq M_2$, there exists $\omega_p \in C^1(\bar{\Omega})$ and a subsequence of (ϕ_n) , which we still denote by (ϕ_n) , such that $\phi_n \to \omega_p$ in $C^1(\bar{\Omega})$.

 $_{
m Since}$

$$\int_{\Omega \backslash D_n} |g\xi| dx \le M \int_{\Omega \backslash D_n} |\xi| dx \le M \left(\int_{\Omega} |\xi|^p dx \right)^{\frac{1}{p}} |\Omega \backslash D_n|^{\frac{p-1}{p}},$$

it follows that $\int_{\Omega \setminus D_n} |g\xi| dx \to 0$ as $n \to \infty$. Hence by letting $n \to \infty$ in (2.6), we obtain

$$\int\limits_{\Omega} |\nabla w_p|^{p-2} \nabla w_p \cdot \nabla \xi dx = \int\limits_{\Omega} h(w_p) \xi dx$$

for all $\xi \in W_0^{1,p}(\Omega)$, i.e. ω_p is the solution of $-\Delta_p u = h(u)$ in $\Omega, u = 0$ on $\partial\Omega$. Thus $\phi_D \to \omega_p$ in $C^1(\overline{\Omega})$ as $|\Omega \setminus D| \to 0$, i.e. (i) holds.

(ii) Note that $\beta < p-1$ for $p < 2, p \sim 2$, which we assume. Since

$$-\Delta_p \omega_p = \omega_p^{\beta} \le \|\omega_p\|_{\infty}^{\beta} \text{ in } \Omega,$$

it follows that

$$0 \le -\Delta_p \left(\frac{\omega_p}{\|\omega_p\|_{\infty}^{\frac{\beta}{p-1}}} \right) \le 1 \text{ in } \Omega.$$
 (2.7)

By the comparison principle,

$$\frac{\omega_p}{\|\omega_p\|_{\infty}^{\frac{\beta}{p-1}}} \le \psi \quad \text{in } \Omega, \tag{2.8}$$

where ψ is defined in (2.4). Let R > 1 be such that $\bar{\Omega} \subset B(0, R)$, where B(0, R) denotes the open ball centered at 0 with radius R in \mathbb{R}^n . Let w satisfy

$$-\Delta_p w = 1$$
 in $B(0, R)$, $w = 0$ on $\partial B(0, R)$.

Then $\psi \leq w_p$ in Ω by Lemma 0 in [13]. Since

$$w(x) = \frac{N^{-\frac{1}{p-1}}(p-1)}{p} \left(R^{\frac{p}{p-1}} - |x|^{\frac{p}{p-1}}\right) \quad \text{for } x \in B(0, R),$$

it follows that

$$\psi \le R^{\frac{p}{p-1}} \le R^3 \text{ in } \Omega \text{ for } p > 3/2,$$
 (2.9)

i.e ψ is uniformly bounded in Ω by a constant independent of p for p > 3/2.

Hence, (2.8) gives

$$\|\omega_p\|_{\infty} \le R^{\frac{3(p-1)}{p-1-\beta}} \le R^{\frac{4}{1-\beta}}$$

for p < 2 sufficiently close to 2, as $\frac{3(p-1)}{p-1-\beta} \downarrow \frac{3}{1-\beta}$ as $p \uparrow 2$. Thus ω_p is uniformly bounded by a constant independent of p for $p \sim 2$, p < 2.

By (2.7)–(2.8) and Lieberman's regularity result [14, Theorem 1], there exist constants $\nu \in (0,1)$ and C>0 independent of such p such that

$$\frac{|\omega_p|_{C^{1,\nu}}}{\|\omega_p\|_{\infty}^{\frac{\beta}{p-1}}} \le C,$$

which implies

$$|\omega_p|_{C^{1,\nu}} \leq C \|\omega_p\|_{\overline{\nu}^{-1}}^{\frac{\beta}{p-1}} \leq C R^{\frac{4\beta}{(1-\beta)(p-1)}} \leq C R^{\frac{8\beta}{1-\beta}}$$

for p>3/2, i.e. ω_p is bounded in $C^{1,\nu}(\bar\Omega)$ by a constant independent of p for p<2, $p\sim 2$. To show that $\omega_p\to\omega_2$ in $C^1(\bar\Omega)$ as $p\to 2$, p<2, let (p_n) be such that $p_n<2,p_n\to 2$ as $n\to\infty$. Then for $\xi\in W_0^{1,p}(\Omega)$,

$$\int_{\Omega} |\nabla \omega_{p_n}|^{p_n - 2} \nabla \omega_{p_n} \cdot \nabla \xi \, dx = \int_{\Omega} \omega_{p_n}^{\beta} \xi \, dx. \tag{2.10}$$

Since (ω_{p_n}) is bounded in $C^{1,\nu}(\bar{\Omega})$, it has a subsequence which we still denote by (ω_{p_n}) and a function $\phi \in C^1(\bar{\Omega})$ such that $\omega_{p_n} \to \phi$ in $C^1(\bar{\Omega})$ as $n \to \infty$.

Let $n \to \infty$ in (2.10), we obtain

$$\int\limits_{\Omega} \nabla \phi \cdot \nabla \xi \ dx = \int\limits_{\Omega} \phi^{\beta} \xi \ dx \text{ for all } \xi \in W_0^{1,p}(\Omega),$$

i.e. $\phi = \omega_2$ in Ω . Hence $\omega_p \to \omega_2$ in $C^1(\bar{\Omega})$ as $p \to 2$, p < 2, which completes the proof.

Next, we establish a comparison principle.

Lemma 2.2. Let h, g and D be as in Lemma 2.1. Let $u, v \in C^1(\bar{\Omega})$ satisfy $\inf_{\Omega} \frac{u}{d} > 0$ and

$$-\Delta_{p}u \geq \begin{cases} h(u) & \text{in } D, \\ g(x) & \text{in } \Omega \backslash D \end{cases}, \quad u \geq 0 \text{ on } \partial\Omega$$

$$\left(resp. -\Delta_{p}u \leq \begin{cases} h(u) & \text{in } D, \\ g(x) & \text{in } \Omega \backslash D \end{cases}, \quad u \leq 0 \text{ on } \partial\Omega \right),$$

$$-\Delta_{p}v = \begin{cases} h(v) & \text{in } D, \\ g(x) & \text{in } \Omega \backslash D \end{cases}, \quad v = 0 \text{ on } \partial\Omega.$$

$$(2.11)$$

Then $u \geq v$ in Ω (resp. $u \leq v$ on $\partial \Omega$).

Proof. Since $\inf_{\Omega} \frac{u}{d} > 0$ and $v \in C^1(\bar{\Omega})$, $\inf_{\Omega} \frac{u}{v} > 0$. Let c be the largest number such that $u \geq cv$ in Ω and suppose c < 1. Then

$$-\Delta_p u \ge h(u) \ge h(cv) \ge c^q h(v)$$
 in D ,

which implies

$$-\Delta_p\left(\frac{u}{c^{\frac{q}{p-1}}}\right) \ge \begin{cases} h(v) & \text{in } D, \\ g(x) & \text{in } \Omega \setminus D. \end{cases}$$

By the weak comparison principle [21, Lemma A.2], $u \ge c^{\frac{q}{p-1}}v$ in Ω . This implies $c \geq c^{\frac{q}{p-1}}$ and so $c \geq 1$, a contradiction. Thus $u \geq v$ in Ω .

Next suppose the inequality \leq in (2.11) holds. Let C be the smallest positive number such that $u \leq Cv$ in Ω and suppose C > 1. Then

$$-\Delta_p u \le h(u) \le h(Cv) \le C^q h(v)$$
 in D ,

which implies

$$-\Delta_p\left(\frac{u}{C^{\frac{q}{p-1}}}\right) \le \begin{cases} h(v) & \text{in } D, \\ g(x) & \text{in } \Omega \backslash D. \end{cases}$$

Hence $u \leq C^{\frac{q}{p-1}}v$ in Ω . This implies $C \leq C^{\frac{q}{p-1}}$ and so $C \leq 1$, a contradiction. Thus $u \leq v$ in Ω , which completes the proof.

Lemma 2.3. Let (A_1) – (A_4) hold, $\beta < p-1$, and u_{λ} be a positive solution of (1.1). Then

$$\lim_{\lambda \to \infty} \frac{u_{\lambda}(x)}{\lambda^{\frac{1}{p-1-\beta}} \omega_p(x)} = 1 \tag{2.12}$$

uniformly for $x \in \Omega$, where we recall that $\omega_p \in C^1(\bar{\Omega})$ is the unique solution of

$$-\Delta_p u = u^\beta \ in \ \Omega, \quad u = 0 \ on \ \partial \Omega.$$

Proof. By Lemma 3.1 in [15],

$$u_{\lambda} \ge \mu \phi_1 \text{ in } \Omega$$

for $\lambda > \lambda_1/k$, where $k, \mu > 0$ are such that $f(z) > kz^{p-1}$ for $z \in (0, \mu]$. Let K be a compact subset of Ω and $c = \min_K f(\mu \phi_1) > 0$. Then

$$-\Delta_p u_{\lambda} \geq \lambda c \chi_K$$
 in Ω ,

where χ_K denotes the characteristic function on K. This implies

$$u_{\lambda} \ge (\lambda c)^{\frac{1}{p-1}} z \ge \lambda^{\frac{1}{p-1}} c_1 d \text{ in } \Omega,$$
 (2.13)

where z is the positive solution of $-\Delta_p u = \chi_K$ in $\Omega, u = 0$ on $\partial\Omega$, and $c_1 = c^{\frac{1}{p-1}} \inf_{\Omega} \frac{z}{d} > 0.$ Let $\varepsilon \in (0,1)$. Then there exists a constant A > 0 such that

$$(1 - \varepsilon)z^{\beta} \le f(z) \le (1 + \varepsilon)z^{\beta} \text{ for } z > A$$
 (2.14)

in view of (A_2) . The left side inequality in (2.14) implies that

$$-\Delta_p u_{\lambda} \ge \lambda \begin{cases} (1 - \varepsilon) u_{\lambda}^{\beta}, & u_{\lambda} > A, \\ 0, & u_{\lambda} < A. \end{cases}$$

Define $\tilde{u}_{\lambda} = \lambda^{-\frac{1}{p-1-\beta}} u_{\lambda}$. Then

$$-\Delta_p \tilde{u}_{\lambda} \geq \begin{cases} (1-\varepsilon)\tilde{u}_{\lambda}^{\beta}, & u_{\lambda} > A, \\ 0, & u_{\lambda} < A. \end{cases}$$

By Lemma 2.2 with $h(u) = (1 - \varepsilon)u^{\beta}$, g(x) = 0, it follows that $\tilde{u}_{\lambda} \geq \check{u}_{\lambda}$ in Ω , where \check{u}_{λ} satisfies

$$-\Delta_p \check{u}_{\lambda} = \begin{cases} (1 - \varepsilon) \check{u}_{\lambda}^{\beta}, & u_{\lambda} > A, \\ 0, & u_{\lambda} < A. \end{cases}$$

Note that $\check{u}_{\lambda} = (1 - \varepsilon)^{\frac{1}{p-1-\beta}} w_{\lambda}$, where w_{λ} satisfies

$$-\Delta_p w_{\lambda} = \begin{cases} w_{\lambda}^{\beta}, & u_{\lambda} > A, \\ 0, & u_{\lambda} < A. \end{cases}$$

By (2.13),

$$\left\{x:u_{\lambda}(x) < A\right\} \subset \left\{x \in \Omega: d(x) < Ac_1\lambda^{-\frac{1}{p-1}}\right\},$$

from which it follows that $|\{x: u_{\lambda}(x) < A\}| \to 0$ as $\lambda \to \infty$. Hence Lemma 2.1 gives $w_{\lambda} \to \omega_p$ in $C^1(\bar{\Omega})$, which implies $w_{\lambda} \geq (1 - \varepsilon)\omega_p$ in Ω for λ large. Consequently,

$$u_{\lambda} = \lambda^{\frac{1}{p-1-\beta}} \tilde{u}_{\lambda} \ge \lambda^{\frac{1}{p-1-\beta}} \check{u}_{\lambda} \ge \lambda^{\frac{1}{p-1-\beta}} (1-\varepsilon)^{\frac{p-\beta}{p-1-\beta}} \omega_{p} \quad \text{in } \Omega.$$
 (2.15)

for λ large. By choosing ε small, we obtain $u_{\lambda} \geq \omega_p/2$ in Ω for λ large, which we assume. Next, the right side inequality in (2.14) implies

$$-\Delta_p u_{\lambda} \le \lambda \begin{cases} (1+\varepsilon)u_{\lambda}^{\beta}, & u_{\lambda} > A, \\ c_2, & u_{\lambda} < A, \end{cases}$$

where $c_2 = \sup_{z \in [0,A]} f(z)$. Hence

$$-\Delta_p \tilde{u}_{\lambda} \le \begin{cases} (1+\varepsilon)\tilde{u}_{\lambda}^{\beta}, & u_{\lambda} > A, \\ c_2, & u_{\lambda} < A. \end{cases}$$

By Lemma 2.2, $\tilde{u}_{\lambda} \leq \hat{u}_{\lambda}$ in Ω , where \hat{u}_{λ} satisfies

$$-\Delta_p \hat{u}_{\lambda} = \begin{cases} (1+\varepsilon)\hat{u}_{\lambda}^{\beta}, & u_{\lambda} > A, \\ c_2, & u_{\lambda} < A. \end{cases}$$

Note that $\hat{u}_{\lambda} = (1+\varepsilon)^{\frac{1}{p-1-\beta}} w_{\lambda}$. Since $w_{\lambda} \to \omega_p$ in $C^1(\bar{\Omega}), w_{\lambda} \le (1+\varepsilon)\omega_p$ in Ω for λ large. Consequently,

$$u_{\lambda} = \lambda^{\frac{1}{p-1-\beta}} \tilde{u}_{\lambda} \le \lambda^{\frac{1}{p-1-\beta}} \hat{u}_{\lambda} \le \lambda^{\frac{1}{p-1-\beta}} (1+\varepsilon)^{\frac{p-\beta}{p-1-\beta}} \omega_{p} \text{ in } \Omega.$$
 (2.16)

Combining (2.15) and (2.16), we deduce that

$$(1-\varepsilon)^{\frac{p-\beta}{p-1-\beta}} \leq \frac{u_\lambda}{\lambda^{\frac{1}{p-1-\beta}}\omega_p} \leq (1+\varepsilon)^{\frac{p-\beta}{p-1-\beta}} \text{ in } \Omega$$

for λ large, i.e. (2.12) holds, which completes the proof.

Lemma 2.4. Let (A_1) – (A_4) hold and u_{λ} be a positive solution of (1.1) with 1 . Then if <math>p is sufficiently close to 2, there exists a constant M > 0 independent of p such that

$$|u_{\lambda}|_{C^1} \leq M \lambda^{\frac{1}{p-1-\beta}}$$

for λ large.

Proof. Let $\kappa > 1$ and $\beta_0 \in (\beta, 1)$. Then $\beta_0 < p-1$ if p is sifficiently close to 2. Since $||u_{\lambda}||_{\infty} \to \infty$ as $\lambda \to \infty$ in view of Lemma 2.3, it follows from (A_2) that

$$f(u) \leq \kappa \|u\|_{\infty}^{\beta}$$

for λ large. Hence

$$-\Delta_p u \leq \lambda \kappa \|u\|_{\infty}^{\beta} \text{ in } \Omega,$$

i.e.

$$-\Delta_p \left(\frac{u}{(\lambda \kappa)^{\frac{1}{p-1}} \|u\|_{p-1}^{\frac{\beta}{p-1}}} \right) \le 1,$$

from which it follows that

$$\frac{u}{(\lambda \kappa)^{\frac{1}{p-1}} \|u\|_{\infty}^{\frac{\beta}{p-1}}} \le \psi \text{ in } \Omega,$$

where ψ is defined in (2.4). Recall that $\|\psi\|_{\infty}$ is bounded independent of p for p > 3/2 in view of (2.9). Hence by [14, Theorem 1],

$$\frac{|u|_{C^1}}{(\lambda \kappa)^{\frac{1}{p-1}} ||u||_{\infty}^{\frac{\beta}{p-1}}} \le K,$$

where K > 1 is a constant independent of λ, p . This implies $|u|_{C^1}^{1-\frac{\beta}{p-1}} \leq K(\lambda \kappa)^{\frac{1}{p-1}}$, i.e.

$$|u|_{C^1} \leq K^{\frac{p-1}{p-1-\beta}} (\lambda \kappa)^{\frac{1}{p-1-\beta}} \leq K^{\frac{\beta_0}{\beta_0-\beta}} \kappa^{\frac{1}{\beta_0-\beta}} \lambda^{\frac{1}{p-1-\beta}} \equiv M \lambda^{\frac{1}{p-1-\beta}}$$

which completes the proof.

3. PROOF OF THEOREM 1.1.

Proof. The existence of a positive solution to (1.1) for λ large follows from the method of sup- and supersolutions. Indeed, it is easy to see that for λ large enough, $\varepsilon\phi_1$ is a subsolution of (1.1) for ε small while $M\phi$ is a supersolution of (1.1) for M large, where ϕ satisfies $-\Delta_p\phi = 1$ in $\Omega, \phi = 0$ on $\partial\Omega$.

Let u, v be positive solutions of (1.1) for λ large and let w = u - v.

By (A_3) , there exists a constant $\delta \in (0,1)$ such that

$$\lim \sup_{\xi \to \infty} \frac{\xi f'(\xi)}{f(\xi)} < \delta. \tag{3.1}$$

Let $\delta_0, \delta_1 \in (0,1)$ be such that $\delta \delta_0^{2(\beta-1)} < \delta_1$. By making p close enough to 2, we can assume that

$$\omega_p \ge \delta_0 \omega_2 \quad \text{in } \Omega$$
 (3.2)

(in view of Lemma 2.1(ii)), and $\delta_1 < p-1$, $(2M)^{2-p}\delta\delta_0^{2(\beta-1)} < \delta_1$, where M is defined in Lemma 2.4.

By (3.1) and (A₂), there exists a constant A > 0 such that

$$f'(\xi) \le \frac{\delta}{\xi^{1-\beta}}.\tag{3.3}$$

for $\xi > A$. Multiplying the equation

$$-\Delta_p u - (-\Delta_p v) = \lambda (f(u) - f(v))$$
 in Ω

by w and integrating, we obtain

$$\int_{\Omega} (|\nabla u|^{p-2} \nabla u - |\nabla v|^{p-2} \nabla v) \cdot (\nabla u - \nabla v) dx = \lambda \int_{\Omega} (f(u) - f(v)) w dx$$

$$= \lambda \int_{\Omega} w^{2} f'(\xi) dx,$$
(3.4)

where ξ is between u(x) and v(x). Using the inequality

$$(|x| + |y|)^{2-p}(|x|^{p-2}x - |y|^{p-2}y) \cdot (x-y) \ge (p-1)|x-y|^2$$

for $1 and <math>x,y \in \mathbb{R}^n$ (see [17, Lemma 30.1]) with $x = \nabla u$ and $y = \nabla v$ in (3.4), we obtain from Lemma 2.4 that

$$(p-1)\int_{\Omega} |\nabla w|^2 dx \le \lambda^{\frac{1-\beta}{p-1-\beta}} (2M)^{2-p} \int_{\Omega} w^2 f'(\xi) dx.$$
 (3.5)

By Lemma 2.3,

$$u, v \ge \delta_0 \lambda^{\frac{1}{p-1-\beta}} \omega_p \text{ in } \Omega$$
 (3.6)

for λ large. This, together with (3.2) and (3.3), implies

$$\int_{\xi>A} w^2 f'(\xi) dx \leq \delta \int_{\xi>A} \frac{w^2}{\xi^{1-\beta}} dx \leq \frac{\delta}{\delta_0^{1-\beta} \lambda^{\frac{1-\beta}{p-1-\beta}}} \int_{\xi>A} \frac{w^2}{\omega_p^{1-\beta}} dx$$

$$\leq \delta \delta_0^{2(\beta-1)} \lambda^{\frac{\beta-1}{p-1-\beta}} \int_{\Omega} \frac{w^2}{\omega_2^{1-\beta}} dx \leq \delta \delta_0^{2(\beta-1)} \lambda^{\frac{\beta-1}{p-1-\beta}} \int_{\Omega} |\nabla w|^2 dx, \tag{3.7}$$

where we have used the inequality $\int_{\Omega} w^2 \omega_2^{\beta-1} dx \leq \int_{\Omega} |\nabla w|^2 dx$ in [15, Lemma 3.5]. Thus

$$\lambda^{\frac{1-\beta}{p-1-\beta}} (2M)^{2-p} \int_{\xi>A} w^2 |f'(\xi)| dx \le (2M)^{2-p} \delta \delta_0^{2(\beta-1)} \int_{\Omega} |\nabla w|^2 dx \le \delta_1 \int_{\Omega} |\nabla w|^2 dx.$$
(3.8)

By (A_5) , there exists a constant C > 0 such that

$$|f'(\xi)| \le \frac{C}{\xi^{1+\alpha}} \text{ for } \xi \in (0, A].$$
 (3.9)

By Hardy's inequality [2, p. 194], there exists a constant m > 0 such that

$$\int_{\Omega} \left| \frac{z}{d} \right|^2 dx \le m \int_{\Omega} |\nabla z|^2 dx,$$

for all $z \in H_0^1(\Omega)$, where d(x) denotes the distance function. This, together with (3.2), (3.6), and (3.9), implies

$$\int_{\xi < A} w^{2} |f'(\xi)| dx \leq C \int_{\xi < A} \frac{w^{2}}{\xi^{1+\alpha}} dx \leq \frac{C}{\delta_{0}^{2(1+\alpha)} \lambda^{\frac{1+\alpha}{p-1-\beta}}} \int_{\xi < A} \frac{w^{2}}{\omega_{2}^{1+\alpha}} dx$$

$$\leq \frac{C\lambda^{-\frac{1+\alpha}{p-1-\beta}}}{\delta_{0}^{2(1+\alpha)} c_{0}^{1+\alpha}} \int_{\xi < A} \frac{w^{2}}{d^{1+\alpha}} dx \leq C_{0} \lambda^{-\frac{1+\alpha}{p-1-\beta}} \int_{\Omega} \left| \frac{w}{d} \right|^{2} dx$$

$$\leq C_{1} \lambda^{-\frac{1+\alpha}{p-1-\beta}} \int_{\Omega} |\nabla w|^{2} dx,$$

where

$$c_0 = \inf_{\Omega} \frac{\omega_2}{d} > 0, \quad C_0 = \frac{C \|d\|_{\infty}^{1-\alpha}}{\delta_0^{2(1+\alpha)} c_0^{1+\alpha}}, \quad \text{and} \quad C_1 = C_0 m.$$

Consequently,

$$\lambda^{\frac{1-\beta}{p-1-\beta}} (2M)^{2-p} \int_{\xi < A} w^2 |f'(\xi)| dx \le C_1 (2M)^{2-p} \lambda^{-\frac{\alpha+\beta}{p-1-\beta}} \int_{\Omega} |\nabla w|^2 dx. \tag{3.10}$$

Combining (3.5), (3.8) and (3.10), we obtain

$$(p-1)\int\limits_{\Omega}|\nabla w|^2dx\leq \left(\delta_1+C_1\left((2M)^{2-p}\lambda^{-\frac{\alpha+\beta}{p-1-\beta}}\right)\int\limits_{\Omega}|\nabla w|^2dx,$$

which implies $\int_{\Omega} |\nabla w|^2 dx = 0$, i.e. w = 0 on Ω , provided that λ is large enough so that

$$\delta_1 + C_1\left((2M)^{2-p}\lambda^{-\frac{\alpha+\beta}{p-1-\beta}}\right) < p-1.$$

This completes the proof of Theorem 1.1.

REFERENCES

- [1] A. Alsaedi, V.D. Radulescu, B. Ahmad, Bifurcation analysis for degenerate problems with mixed regime and absorption, Bull. Math. Sci. 11 (2021), Paper no. 2050017.
- [2] H. Brezis, Analyse fonctionnelle, théorie et applications, 2nd ed., Masson, Paris, 1983 [in French].
- [3] H. Brezis, L. Oswald, Remark on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64.
- [4] S. Chen, C.A. Santos, M. Yang, J. Zhou, Bifurcation analysis for a modified quasilinear equation with negative exponent, Adv. Nonlinear Anal. 11 (2022), no. 1, 684–701.
- [5] K.D. Chu, D.D. Hai, R. Shivaji, Uniqueness for a class of singular quasilinear Dirichlet problem, Appl. Math. Lett. 106 (2020), 106306.
- [6] P.T. Cong, D.D. Hai, R. Shivaji, A uniqueness result for a class of singular p-Laplacian Dirichlet problem with non-monotone forcing term, Proc. Amer. Math. Soc. 150 (2021), 633–637.
- [7] E.N. Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal. 8 (1984), 835–836.
- [8] E.N. Dancer, On the number of positive solutions of semilinear elliptic systems, Proc. London Math. Soc. 53 (1986), 429-452.
- [9] J.I. Díaz, J.E. Saa, Existence et unicité de solutions positives pur certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris 305 (1987), 521–524.
- [10] P. Drábek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 (2001), 189–204.
- [11] Z. Guo, J.R.L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh 124 (1994), 189–198.
- [12] D.D. Hai, Uniqueness of positive solutions for a class of quasilinear problems, Nonlinear Anal. 69 (2008), 2720–2732.
- [13] B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math. 410 (1990), 1–22.
- [14] G.M. Lieberman, Boundary regularity for solutions of degenerate quasilinear elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219.
- [15] S.S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), 283–297.
- [16] S.S. Lin, Some uniqueness results for positone problems when a parameter is large, Chinese J. Math. 13 (1985), 67–81.
- [17] T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1986.
- [18] N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257–278.

- [19] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis Theory and Methods, Springer Monographs in Mathematics, Cham, 2019.
- [20] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. 136 (2020), 1–21.
- [21] S. Sakaguchi, Concavity properties of solutions of some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 403–421.
- [22] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.

B. Alreshidi

Mississippi State University Department of Mathematics and Statistics Mississippi State, MS 39762, USA

D.D. Hai (corresponding author) dang@math.msstate.edu

Mississippi State University Department of Mathematics and Statistics Mississippi State, MS 39762, USA

Received: February 22, 2023. Revised: August 23, 2023. Accepted: August 27, 2023.