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Abstract. We prove uniqueness of positive solutions for the problem
—Apu = Af(u) in Q, v=0on 9Q,

where 1 < p < 2 and p is close to 2, Q0 is bounded domain in R™ with smooth
boundary 9, f : [0,00) — [0,00) with f(2) ~ 27 at oo for some 3 € (0,1), and \ is
a large parameter. The monotonicity assumption on f is not required even for u large.
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1. INTRODUCTION

In this paper, we investigate uniqueness of positive solutions to the p-Laplacian BVP

{Apu =Af(u) in Q,

1.1
u=0 on 09, (1.1)

where Apu = div(|Vu|P~2Vu),1 < p < 2, Q is a bounded domain in R" with
boundary 052, A is a positive parameter, and f : [0,00) — [0, 00) is p-sublinear at oo.

It is well-known that (1.1) has a unique positive solutions for all A > 0 if f is
continuous on [0,c0) and Z () is strictly decreasing on (0,00) (see the pioneering
work [3] for p = 2 and [9,10] for its extension to p > 1). When the latter condition
is not satisfied, there is a number of uniqueness results for (1.1) when the parameter
A is large (see e.g. [5-8,11,12,15,16] and the references therein). We are motivated
by the uniqueness results in [7,8,15,16] for p = 2 and f smooth with f(u) > 0 for
u > 0. In [15], Lin proved uniqueness of positive solutions to (1.1) when f(u) ~ u”
for some 3 € (0,1),limsup,,_, - “]}:(/3)‘) < 1, and lim sup,,_, o+ u?|f/(u)| < co. The case
when f is bounded was discussed in [8] and [16], where f(u) - C > 0 as u — oo
and either f(0) > 0 or f'(0) > 0 in [8], and lim,— @ =0, infjp o) f > 0 together
with liminf, o f(u) > limsup,,_, ., uf’'(u) in [16]. Note that in these references, the
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nonlinearity f is not required to be increasing or decreasing even for u large. For
p > 1, uniqueness results for (1.1) were obtained in [5,6,11,12] for A large under
the p-sublinear assumption together with some monotonicity conditions on f. In this
paper, we will provide a uniqueness result in the absence of this common monotonicity
requirement when 1 < p < 2 and p is close to 2, f(u) ~ u? at oo for some 3 € (0,1)
together with some natural conditions at 0 and co. Thus our result provides an
extension of the work in [7,8,15,16] from p = 2 to p € (1,2) with p ~ 2, which seems
to be the first in the literature. In particular, when applied to the model example
f(u) = u? +sin?(u?), where 8 € (0,1), Theorem 1.1 below gives uniqueness of positive
solutions to (1.1) provided A is large and p < 2 is close to 2. A calculation shows
that f(u) is neither increasing nor decreasing even for u large. We refer to the recent
monograph [19] for the abstract results used in this paper, and to [1,4,18-20] for the
analysis of related nonlinear problems.
We make the following assumptions:

(A1) f :[0,00) — [0,00) is continuous and of class C' on (0,00) with f(u) > 0

for u > 0.
(Az2) There exists a constant 5 € (0,1) such that lim, % =1.
(A3) limsup,_, "J{(S;) <1
(A4) liminf, ,o+ % > 0.
(As) There exists a € (0,1) such that limsup,_, o+ u® |/ (u)| < oo.

By a positive solution of (1.1), we mean a function u € C*¥(Q) for some v € (0, 1)
with u > 0 in Q and satisfying (1.1) in the weak sense.
Our main result is the following.

Theorem 1.1. Let 1 < p < 2 and (A1)—(As) hold. Then if p is sufficiently close to 2,
there exists a constant Ao > 0 such that (1.1) has a unique positive solution for A > Ag.

Remark 1.2. (i) Theorem 1.1 is not true for A > 0 small. Indeed, let o, 8 € (0,1) and

uP~ e for 4 € (0,1),
=" 01
U foru > 1,
where a = p — 1 — . Note that a > 0 if p is sufficiently close to 2. Then (A;)—(As)
hold. Suppose u is a positive solution of (1.1) with A < A;e®~!, where \; denotes

the first eigenvalue of —A, with Dirichlet boundary condition. Since ¢ < 1 — f,
f(u) < e'=ByP~1 for all u > 0. Hence, multiplying the equation in (1.1) by u and

integrating, we get
/|Vu|pdx < )\el_ﬁ/updac < Al/updx,
Q

Q Q

a contradiction with

Voul|Pd
)\1: lIlf 7f9| 'U| x.
vew @) Jg [v[Pdz

v#0

Hence, (1.1) has no positive solution for A small.
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(ii) Theorem 1.1 gives uniqueness of positive solutions to (1.1) when

!
lim sup uf ()

u—oo flu)

where p € (1,2) and is sufficiently close to 2 without requiring any monotonicity of f.
We believe that without any monotonicity assumption, uniqueness for (1.1) for A
large under conditions (1.2) and (A1), (As), (A4), (As) for other values of p is an
open question. Note that a uniqueness result under these conditions together with the
additional assumption that f is nondecreasing on [0, c0) was obtained in [12].

<p-—1, (1.2)

2. PRELIMINARIES

In what follows, we denote by d(z) the distance from z to the boundary 9. Let
A1 be the first eigenvalue of —A, with Dirichlet boundary conditions, and ¢; the
corresponding positive normalized eigenfunction, i.e. ||¢1]/co = 1.

Lemma 2.1. Let h: [0,00) — [0,00) be nondecreasing and D be an open set in S).
Suppose there exists ¢ € (0,p — 1) such that u~%h(u) is nonincreasing on (0,00) and
liminf, o+ u!™Ph(u) > 0. Let g : Q — [0,00) be bounded in Q. Then the problem

—Ayu = Au) m D, u=0 on 99 (2.1)
gx) i O\D,

has a positive solution ¢p € C(Q) with infq d’TD > 0. Furthermore,
(i) ¢p — wp in CH(Q) as |Q\D| — 0, where w, is the solution of
—Apu=h(u) inQ, u=0 ondf. (2.2)
and |A| denotes the Lebesque measure of A; -
(ii) Let h(u) = u® for some B € (0,1). Then w, — we in C1(Q) asp — 2, p < 2.
Proof. We first show that the problem

(2.3)

—Apu = h(u) +g(z) inQ,
u=0 on ON).

has a positive solution by the method of sub- and supersolutions.

Clearly the function w, defined in (2.2) is a subsolution of (2.3). Note that the
existence and uniqueness of w,, follows from [9,10].

Let ¢ € C(Q) satisfy

“App=1inQ, ¢ =0on N (2.4)

Then
—Ap (M) = MP~H > MOh(y) + g(x) > h(M) + g(z) in Q
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for M large since h is nondecreasing with u~9h(u) decreasing, ¢ < p — 1, and g is
bounded in Q. Thus M1 is a supersolution of (2.3) with M1 > w, in Q for M large.
Hence, (2.3) has a solution ¢ € C*(Q) with wp < ¥ < M1 in Q. Next, we show that
the problem

in D
—Apu= hw) e u =0 on 0 (2.5)
0 in Q\D,

has a positive solution. Let g be the solution of

AP in D
—Apu = 191 %n ’ u =0 on 0.
0 in Q\D,

By the strong maximum principle [22], infq ¥ sv = my for some my € (0,1).
Since liminf,_,o+ u!Ph(u) > 0, inf (0,1 u'=Ph(u) = mg > 0. Hence

h(evo) > h(emi¢r) > (emq)Th(¢1) > (€m1)qm0¢1
> M(e¢1)P ™t = —Ap(eth) in D
for € small. Thus €1y is a subsolution of (2.5). Since w, is a supersolution of (2.5)
with wy, > etbg in Q for € small, it follows that (2.5) has a solution ¢ with ey < 1
< wp in Q. Clearly ; and 1) are sub- and supersolution of (2. 1) respectlvely with
Y1 Swp < ¥ in Q, and the existence of a solution ¢p € C'(Q) with me >0
follows.

(i) Let M > 0 be such that
g(z) < M

for x € Q. Then
—Ap(¢p) < h([[¢plloc) + M in Q,

which implies by the maximum principle that

—Ap< ¢0 1><1inQ.
(h(ll¢pllsc) + M) 7=

This implies ¢p € C1¥(Q) for some v € (0,1) and there exists a constant M; > 0
independent of ¢p such that

6plcre < Mi(h(|ép o) + M)7T < My (h(|p|erw) + M)7T

In particular,

h(‘¢D|Clu)+M > 1
|¢D|Clu N M{Fl
h(t)+M

Since limy_, o =1 = 0, there exists a constant Ms > 0 independent of D such that
|¢plcir < M. Let (D) be a sequence of open sets in  such that |Q\D,| — 0 as
n — oo, and let ¢,, = ép, . Then for & € Wy*(),

/ IV |[P 2V, - Védr = / h(¢n)édx + / g€dz. (2.6)
Q

D, Q\D,,
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Since |¢y,|c1.v < Ma, there exists w, € C'(Q) and a subsequence of (¢,,), which we still
denote by (¢,), such that ¢,, — w, in C1(Q).
Since

/ lg€|da < M / €lda < M / efPde | 1\D, |5
Q

Q\D,, Q\D,,

it follows that fQ\D |g€|dx — 0 as n — oco. Hence by letting n — oo in (2.6), we obtain
/|pr|p72pr -V&dx = /h(wp)fdx
Q Q

for all £ € W,P(Q), i.e. w, is the solution of —Ayu = h(u) in Q,u =0 on IQ. Thus

ép — w, in C1(Q) as [Q\D| — 0, i.e. (i) holds.
(ii) Note that 8 < p — 1 for p < 2,p ~ 2, which we assume. Since
—Apwp = wﬁ < pr||fo in §,

it follows that

0<-A, [ —2 -] <1inQ (2.7)
wpll&”
By the comparison principle,
P <y (2.8)
lowplloe

where v is defined in (2.4). Let R > 1 be such that Q C B(0, R), where B(0, R)
denotes the open ball centered at 0 with radius R in R™. Let w satisfy

—Apw=1in B(0,R), w=0ondB(0,R).
Then ¢ < w,, in Q by Lemma 0 in [13]. Since

_NTET(p-1)

(R% — |g;‘p%1) for z € B(0, R),
p

w(z)
it follows that ,
Y < R7=1 < R? in Q for p > 3/2, (2.9)

i.e ¢ is uniformly bounded in by a constant independent of p for p > 3/2.
Hence, (2.8) gives
3(p—1) _4
[wplloe < RP=T=7 < RT-F
for p < 2 sufficiently close to 2, as 2(71)1_7123 1 % as p T 2. Thus w,, is uniformly bounded
by a constant independent of p for p ~ 2, p < 2.




10 B. Alreshidi and D.D. Hai

By (2.7)—(2.8) and Lieberman’s regularity result [14, Theorem 1], there exist
constants v € (0,1) and C' > 0 independent of such p such that

|wp|C£ <,
Jwpllée

which implies

_B_ 48 88
lwplorr < Cllwpllds” < CRT=PE=D < CR™-F

for p > 3/2, i.e. w, is bounded in C'¥ () by a constant independent of p for p < 2,
p ~ 2. To show that w, — we in C*'(Q) as p — 2, p < 2, let (p,) be such that
Pn < 2,pn — 2 as n — co. Then for £ € WyP(Q),

/ |Vwp,
Q

Since (wp,, ) is bounded in C' LY (Q), it has a subsequence which we still denote by (wp,, )
and a function ¢ € C1(Q) such that w,, — ¢ in C1(Q) as n — .
Let n — o0 in (2.10), we obtain

P2y, - VE do = / wh ¢ da. (2.10)
Q

/v¢ V¢ dr = /¢ﬁ5 dz for all € € WyP(Q),

Q Q

ie. ¢ = wy in Q. Hence w, — wy in C}(Q) as p — 2, p < 2, which completes
the proof. O

Next, we establish a comparison principle.

Lemma 2.2. Let h, g and D be as in Lemma 2.1. Let u,v € CY(Q) satisfy
info 7 >0 and

—Ayu > h(u) z'nD, , u>0 ondQ
g(x) in Q\D
(2.11)
resp. — Apu < h(w) m D, , u<0o0ndQ]|,
g(x) in Q\D
Ay = hv) m D, , v=20 on 90N.
g(x) in Q\D

Then u > v in Q (resp. u < v on 9N).

Proof. Since infq § >0 and v € CY(Q), infq = > 0. Let ¢ be the largest number such
that u > cv in Q and suppose ¢ < 1. Then

—Apu > h(u) > h(cv) > ¢?h(v) in D,
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()= {0 nes

By the weak comparison principle [21, Lemma A.2], u > c7 Ty in Q. This implies

which implies

c> ¢ and so ¢ > 1, a contradiction. Thus u > v in Q.
Next suppose the inequality < in (2.11) holds. Let C be the smallest positive
number such that u < Cv in © and suppose C > 1. Then

—Apu < h(u) < h(Cv) < Cih(v) in D,

—Ap( uq )S h(v) %nD,

Cr1 g(x) in Q\D.

Hence u < C7=1y in Q. This implies C' < C7=1 and so C <1, a contradiction. Thus
u < v in 2, which completes the proof. O

which implies

Lemma 2.3. Let (A1)—(Ay4) hold, B <p—1, and uy be a positive solution of (1.1).
Then
lim ux()

N (2.12)

uniformly for x € Q, where we recall that w, € C*(Q) is the unique solution of
~Aju=u?inQ, u=0 ondQ.

Proof. By Lemma 3.1 in [15],
uy > ppy in Q

for A > \1/k, where k, u > 0 are such that f(z) > kzP~! for z € (0, ).
Let K be a compact subset of 2 and ¢ = ming f(u¢;) > 0. Then

—Apuy > Acxk in Q,
where x i denotes the characteristic function on K. This implies
uy > ()\c)ﬁz > A7 Teyd in Q, (2.13)

where z is the positive solution of —A,u = xx in Q,u = 0 on 02, and
c1 = Cﬁ infgg > 0.
Let € € (0,1). Then there exists a constant A > 0 such that

(1—e)2? < f(z) < (1+¢)2f for 2> A (2.14)
in view of (Ag). The left side inequality in (2.14) implies that

(1- 5)uf, uy > A,

—-A > A
P = {0, uy < A.
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Define ) = = u). Then
_A\aB
CAi > (1 —e)ay, uy> A,
0, uy < A.
By Lemma 2.2 with h(u) = (1 — &)u?, g(x) = 0, it follows that @iy > uy in ©, where

1 satisfies

A (1—5)&?, uy > A,
A =
P 0, uy < A.

Note that %y = (1 —¢) =1=7 wy, where w) satisfies
B
wh, uy> A,
—Apwy={ A
0, uy < A.

By (2.13),
{z:ur(r) < A} C {x €eQ:d(z) < Acl/\_p%l} ,

from which it follows that [{z : ux(z) < A}| — 0 as A — oo. Hence Lemma 2.1 gives
wy — wp in CH(Q), which implies wy > (1 — ¢)w, in Q for A large. Consequently,

Uy = \FTTB @y > ATR Gy > ATE (1 — €)7o Aw, in Q. (2.15)

for A large. By choosing & small, we obtain uy > w,/2 in Q for X large, which we assume.
Next, the right side inequality in (2.14) implies

(1+ a)uf, uy > A,

—Ajuy <\
PEA = {02, uy < A,

where ¢z = sup,¢(o 4] f(2). Hence

~B
CAin < (I4+e)ay, ux> A,
C2, uy < A.

By Lemma 2.2, 4y < @) in 2, where @) satisfies

. {(14-8)&/)\3, uy > A,
pruk =
Ca, uy < A.

Note that 4y = (1 +¢) 717 wy.Since wy — wp in CH(Q),wy < (14 €)w, in Q for A
large. Consequently,

uy = A\FTB iy < AFTBay < AFTE (1 4 6) 7T R w, in Q. (2.16)

Combining (2.15) and (2.16), we deduce that
(1—e)7TF < —1— < (1+&)7T7 in Q
AP=T=F Wy,

for A large, i.e. (2.12) holds, which completes the proof. O
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Lemma 2.4. Let (A1)—(A4) hold and uy be a positive solution of (1.1) with 1 < p < 2.
Then if p is sufficiently close to 2, there exists a constant M > 0 independent of p
such that

‘U)\‘Cl < M)\ﬁ

for X large.

Proof. Let k > 1 and By € (8,1). Then Sy < p — 1 if p is sifficiently close to 2. Since
[lualloo = 00 a8 A — oo in view of Lemma 2.3, it follows from (As) that

Fu) < llull %

for A large. Hence
—Ayu < Alul/?, in Q,

i.e.

_Ap # <1

1 B -
(AR) =T fJul| &
from which it follows that

U
— < in Q,

(Ar) 7T | &

where 1) is defined in (2.4). Recall that ||9)||o is bounded independent of p for p > 3/2
in view of (2.9). Hence by [14, Theorem 1],

|u| o
= <K

(AR) 7T [Juf|ss™

1

1— B
where K > 1 is a constant independent of A, p. This implies |u|,, """ < K(Ax)?-T, ie.

p—1 1 _Bo _ _1 1 1
|u|cr < Kp=1=8 (Ak)?P=1=F < KPo—F kPo—B\p=1-F = MA\p=1-7

which completes the proof. O

3. PROOF OF THEOREM 1.1.

Proof. The existence of a positive solution to (1.1) for A large follows from the method
of sup- and supersolutions. Indeed, it is easy to see that for A large enough, £¢; is
a subsolution of (1.1) for € small while M ¢ is a supersolution of (1.1) for M large,
where ¢ satisfies —A,¢ =11in Q,¢ = 0 on 9.

Let u,v be positive solutions of (1.1) for A large and let w = u — v.

By (Aj), there exists a constant § € (0,1) such that

e
lim sup =55

< 6. (3.1)
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Let 09,91 € (0,1) be such that 55§(ﬂ_1) < 61. By making p close enough to 2, we can
assume that
wp > Jowe in (3.2)

(in view of Lemma 2.1(ii)), and 61 < p — 1, (2M)2_p56§(ﬁ71) < 01, where M is defined
in Lemma 2.4.
By (3.1) and (Aj), there exists a constant A > 0 such that

£O < a5 (3.3)
for £ > A. Multiplying the equation
A= (=) = A(f(u) - f(v)) in ©

by w and integrating, we obtain

/ (|VulP2Vu — |Vu[P2V0) - (Vu— Vo)dz = X | (f(u) — f(v)) wdz

Q

D O~
—
w
N

X[ WP f(€)de,

where £ is between u(x) and v(z). Using the inequality
([ + [y P (|2 P22 — [y[P~%y) - (2 — y) > (0= D]z —y/?
for 1 <p<2andz,y € R” (see [17, Lemma 30.1]) with = Vu and y = Vv in (3.4),
we obtain from Lemma 2.4 that
(p—1) / VwlPde < A7 725 (20)2 7 / W2 f(€)da. (3.5)
Q Q

By Lemma 2.3,
1
U, v > JpAP-1-Fw, in Q (3.6)
for X large. This, together with (3.2) and (3.3), implies

2 K} w2
wf’ dm<5/ Y dr < - / dx
[ wereinss [ ges st | 0
E>A

§>A §>A

< 655 AT /

(3.7)

2 -1
do < 682° "V \7"s /|Vw|2dm,
Wo o

where we have used the inequality [, wol dr < Jo [Vw|?dz in [15, Lemma 3.5].
Thus

1-8

AP (20)2 / W?|f(6)]da < (2M)2—p55§<ﬁ*1>/|w|2dx < 61/\Vw\2da;.

E>A Q Q

(3.8)



Uniqueness for a class p-Laplacian problems when a parameter is large 15

By (As), there exists a constant C' > 0 such that
, C
Lf1(©)] < fita for £ € (0, A]. (3.9)
By Hardy’s inequality [2, p. 194], there exists a constant m > 0 such that
212
/’ﬁ’ d:cgm/|Vz|2dx,
Q Q

for all z € H}(Q2), where d(x) denotes the distance function.
This, together with (3.2), (3.6), and (3.9), implies

p—1-8

2 C w2
217(¢)\d <C/ e < / d
/ w ‘f (g)l T > £1+a T > 6(2)(1+a))\ 1t+a 2 w%+a €z

£<A £<A
CA" 7155 w? . w2
- 52(1+a) 1+a / dl_,_ad-TSCo)\ P—I—B/’E‘ dx
0 Co
E<A s

<CNTFIE /|Vw|2dx,

Q
where
W Clld|l5
=inf —=>0, Ch= ——— d Cy=Cym.
Co Hglz d >0, 0 63(1+0‘)cé+0‘7 an 1 om
Consequently,
VMR [ el < CempE S [ Ve (310)
£<A Q

Combining (3.5), (3.8) and (3.10), we obtain

(p— 1)/|Vw|2dx < (014 Cy ((2M)2*pxipfffﬁ) /|Vw|2dx,
Q Q

which implies [, |[Vw|?*dz = 0, i.e. w = 0 on , provided that ) is large enough so that
o py——2tB
0 +Ch ((QM) PX Pflfﬁ) <p-—1.

This completes the proof of Theorem 1.1. O
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