PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static and dynamic impact performance optimization of CFRP/Al bolt joint coupling structure-lay-up-connection parameters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Static shearing, drawing, and dynamic impact test schemes of carbon fber reinforced polymer (CFRP)/aluminum alloy (Al) bolt joint were designed. The fnite element model of the CFRP/Al bolt joint was established, and the failure modes of the joints under the static and dynamic impact conditions were analyzed. The structure, lay-up, and connection parameters of the joint were defned as design variables, and the static and dynamic impact performance indicators of the joint and the lay-up numbers of the CFRP sheet were defned as optimization objectives. Integrated multiobjective optimization was conducted for joints, employing the radial basis function neural network (RBFNN) surrogate model, elitist nondominated sorting genetic (NSGA-II) algorithm, and entropy-technique for order preference by similarity to ideal solution (E-TOPSIS) decision method. The best trade-of solution was obtained, and the optimal design variables were determined. The optimized joint was fabricated, and static and dynamic impact tests were carried out. The test and simulation results were compared to verify the efectiveness of simulation and optimization.
Rocznik
Strony
art. no. e118
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
Bibliografia
  • 1. Yoon D, Kim S, Kim J, Doh Y. Study on bearing strength and failure mode of a carbon-epoxy composite laminate for designing bolted joint structures. Compos Struct. 2020;239: 112023. https://doi.org/10.1016/j.compstruct.2020.112023.
  • 2. Shan M, Zhao L, Liu F, Qi D, Zhang J. Revealing the competitive fatigue failure behaviour of CFRP-aluminum two-bolt, doublelap joints. Compos Struct. 2020;244: 112166. https://doi.org/10.1016/j.compstruct.2020.112166.
  • 3. Hu XF, Haris A, Ridha M, Tan VBC, Tay TE. Progressive failure of bolted single-lap joints of woven fbre-reinforced composites. Compos Struct. 2018;189:443-54. https://doi.org/10.1016/j.compstruct.2018.01.104.
  • 4. Mandal B, Chakrabarti A. Numerical failure assessment of multibolt FRP composite joints with varying sizes and preloads of bolts. Compos Struct. 2018;187:169-78. https://doi.org/10.1016/j.compstruct.2017.12.048.
  • 5. Zhai Y, Li D, Li X, Wang L, Yin Y. An experimental study on the efect of bolt-hole clearance and bolt torque on single-lap, countersunk composite joints. Compos Struct. 2015;127:411-9. https://doi.org/10.1016/j.compstruct.2015.03.028.
  • 6. Hu J, Zhang K, Yang Q, Cheng H, Liu P, Yang Y. An experimental study on mechanical response of single-lap bolted CFRP composite interference-ft joints. Compos Struct. 2018;196:76-88. https://doi.org/10.1016/j.compstruct.2018.05.016.
  • 7. Ahmad H, Crocombe AD, Smith PA. Strength prediction in CFRP woven laminate bolted double-lap joints under quasi-static loading using XFEM. Compos Part A Appl Sci Manuf. 2014;56:192-202. https://doi.org/10.1016/j.compositesa.2013.10.012.
  • 8. Wang P, He R, Chen H, Zhu X, Zhao Q, Fang D. A novel predictive model for mechanical behavior of single-lap GFRP composite bolted joint under static and dynamic loading. Compos Part B Eng. 2015;79:322-30. https://doi.org/10.1016/j.compositesb.2015.04.053.
  • 9. Montagne B, Lachaud F, Paroissien E, Martini D, Congourdeau F. Failure analysis of single lap composite laminate bolted joints: comparison of experimental and numerical tests. Compos Struct. 2020;238: 111949. https://doi.org/10.1016/j.compstruct.2020.111949.
  • 10. Tang Y, Zhou Z, Pan S, Xiong J, Guo Y. Mechanical property and failure mechanism of 3D Carbon-Carbon braided composites bolted joints under unidirectional tensile loading. Mater Des. 2015;65:243-53. https://doi.org/10.1016/j.matdes.2014.08.073.
  • 11. Kaybal HB, Ulus H, Eskizeybek V, Avcl A. An experimental study on low velocity impact performance of bolted composite joints part 1: infuence of halloysite nanotubes on dynamic loading response. Compos Struct. 2021;258: 113415. https://doi.org/10.1016/j.compstruct.2020.113415.
  • 12. Kaybal HB, Ulus H, Eskizeybek V, Avci A. An experimental study on low velocity impact performance of bolted composite jointspart 2: Infuence of long-term seawater aging. Compos Struct. 2021;272:113571. https://doi.org/10.1016/j.compstruct.2021.113571.
  • 13. Pearce GM, Johnson AF, Thomson RS, Kelly DW. Experimental Investigation of dynamically loaded bolted joints in carbon fbre composite structures. Appl Compos Mater. 2010;17(3):271-91. https://doi.org/10.1007/s10443-009-9120-8.
  • 14. Pearce GM, Johnson AF, Thomson RS, Kelly DW. Numerical investigation of dynamically loaded bolted joints in carbon fbre composite structures. Appl Compos Mater. 2010;17(3):329-46. https://doi.org/10.1007/s10443-009-9123-5.
  • 15. Guo Z, Li Z, Zhu H, Cui J, Li D, Li Y, et al. Numerical simulation of bolted joint composite laminates under low-velocity impact. Mater Today Commun. 2020;23:1000891. https://doi.org/10. 1016/j.mtcomm.2020.100891.
  • 16. Liu L, Wang X, Wu Z, Keller T. Optimization of multi-directional fiber architecture for resistance and ductility of bolted FRP profle joints. Compos Struct. 2020;248: 112535. https://doi.org/10.1016/j.compstruct.2020.112535.
  • 17. Kradinov V, Madenci E, Ambur DR. Application of genetic algorithm for optimum design of bolted composite lap joints. Compos Struct. 2007;77(2):148-59. https://doi.org/10.1016/j.compstruct. 2005.06.009.
  • 18. Zhao S, Li D, Xiang J. Multi-objective optimum of composite bolted joints by using the multi-layer convex hull method. Struct Multidiscip Optim. 2018;58(3):1233-42. https://doi.org/10.1007/s00158-018-1964-9.
  • 19. Liu F, Yao W, Shi X, Zhao L, Zhang J. Bearing failure optimization of composite double-lap bolted joints based on a three-step strategy marked by feasible region reduction and model decoupling. Cmc-Comput Mater Continua. 2020;62(2):977-99. https:// doi.org/10.32604/cmc.2020.07184.
  • 20. Xie M. Joints for composites materials. Shanghai: Shanghai Jiaotong University Press; 2016.
  • 21. Li X, Cheng X, Guo X, Liu S, Wang Z. Tensile properties of a hybrid bonded/bolted joint: parameter study. Compos Struct. 2020;245: 112329. https://doi.org/10.1016/j.compstruct.2020.112329.
  • 22. El Masnaoui W, DaidiE A, Lachaud F, Paleczny C. Semi-analytical model development for preliminary study of 3D woven composite/metallic fange bolted assemblies. Compos Struct. 2021;255: 112906. https://doi.org/10.1016/j.compstruct.2020.112906.
  • 23. Ghugal YM, Shimpi RP. A review of refined shear deformation theories for isotropic and anisotropic laminated beams. J Reinf Plast Compos. 2001;20(3):255-72. https://doi.org/10.1106/ n95g-era1-a1cm-rd7e.
  • 24. Kassapoglou C. Design and analysis of composite structures: with applications to aerospace structures. New York: Wiley; 2010.
  • 25. Liu PF, Liao BB, Jia LY, Peng XQ. Finite element analysis of dynamic progressive failure of carbon fber composite laminates under low velocity impact. Compos Struct. 2016;149:408-22. https://doi.org/10.1016/j.compstruct.2016.04.012.
  • 26. Schön J. Coefcient of friction for aluminum in contact with a carbon fber epoxy composite. Tribol Int. 2004;37(5):395-404. https://doi.org/10.1016/j.triboint.2003.11.008.
  • 27. McCarthy CT, McCarthy MA, Stanley WF, Lawlor VP. Experiences with modeling friction in composite bolted joints. J Compos Mater. 2005;39(21):1881-908. https://doi.org/10.1177/00219 98305051805.
  • 28. Bezerra LM, Bonilla J, Silva WA, Matias WT. Experimental and numerical studies of bolted T-stub steel connection with different fange thicknesses connected to a rigid base. Eng Struct. 2020;218: 110770. https://doi.org/10.1016/j.engstruct.2020.110770.
  • 29. Hu D, Papadopoulos J, Adams GG. Prying action in a bolted cantilever analyzed as a receding contact problem. J Eng Mech. 2019;145(4):04019018. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001593.
  • 30. Rad MA, Khalkhali A. Crashworthiness multi-objective optimization of the thin-walled tubes under probabilistic 3D oblique load. Mater Des. 2018;156:538-57. https://doi.org/10.1016/j.matdes.2018.07.008.
  • 31. Wang D, Xu W, Wang Y, Gao J. Design and optimization of tapered carbon-fber-reinforced polymer rim for carbon/aluminum assembled wheel. Polym Compos. 2021;42(1):253-70. https://doi. org/10.1002/pc.25822.
  • 32. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182-97. https://doi.org/10.1109/4235.996017.
  • 33. Wang D, Jiang R, Wu Y. A hybrid method of modifed NSGA-II and TOPSIS for lightweight design of parameterized passenger car sub-frame. J Mech Sci Technol. 2016;30(11):4909-17. https:// doi.org/10.1007/s12206-016-1010-z.
  • 34. Li J, Zuo W, Jiaqiang E, Zhang Y, Li Q, Sun K, et al. Multiobjective optimization of mini U-channel cold plate with SiO2 nanofuid by RSM and NSGA-II. Energy. 2022;242: 123039. https://doi.org/10.1016/j.energy.2021.123039.
  • 35. Garcia Marrero LE, Arzola RJ. Web-based tool for the decision making in photovoltaic/wind farms planning with multiple objectives. Renewable Energy. 2021;179:2224-34. https://doi.org/10. 1016/j.renene.2021.08.022.
  • 36. Liu Y, Wan X, Xu W, Shi L, Deng G, Bai Z. An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations. Accident Anal Prev. 1800;164: 106476. https://doi.org/10.1016/j.aap.2021.106476.
  • 37. Yoon KP, Hwang CL. Multiple attribute decision making: an introduction. Thousands Oaks: Sage Publication; 1995.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f901f44f-0ee8-4559-830b-ddcc265a4404
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.