PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ARDP: simplified machine learning predictor for missing unidimensional academic results dataset

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present the Academic Results Datasets Predictor (ARDP), for missing academic results datasets, based on chi-squared expected calculation, positional clustering, progressive approximation of relative residuals, and positional averages of the data in a sampled population. Academic results datasets are data originating from inside academic institutions’ results repositories. It is a technique designed specifically for predicting missing academic results. Since the whole essence of data mining is to elicit useful information and gain knowledge-driven insights into datasets, ARDP positions data explorer at this advantageous perspective. ARDP is committed to solve missing academic results dataset problems more quickly over and above what currently obtains. PARD is computed by leveraging on the averages of neighbouring values. The predictor was implemented using Python, and the results show that it is admissible in a minimum of up to 85 percent accurate predictions of the sampled cases. It has been verified that ARDP shows a tendency toward greater precision in providing the best solution to the problems of predictions of missing academic results datasets in universities.
Rocznik
Strony
47--63
Opis fizyczny
Bibliogr. 27 poz., tab.
Twórcy
  • Computer Department, Elizade University, Ilara Mokin, Nigeria
  • Information Systems Dept., Federal University of Technology, Akure, Nigeria
  • Computer Department, Elizade University, Ilara Mokin, Nigeria
Bibliografia
  • [1] Abugroon, M. A. S. (2018). Comparison of Educational Datamining algorithms for Supporting the Decision in Sudanese Higher Education Institutions. GCNU Journal, 7, 123-140.
  • [2] Anupama Kumar, S., & Vijayalakshmi, Dr. M. N. (2011). Efficiency of decision trees in predicting student's academic performance. In D. C. Wyld, et al. (Eds.), CCSEA 2011, CS & IT 02 (pp. 335–343). https://doi.org/10.5121/csit.2011.1230
  • [3] Baepler, P., & Murdoch, C. J. (2010). Academic analytics and data mining in higher education. International Journal for the Scholarship of Teaching & Learning, 4(2), 1–9. https://doi.org/10.20429/ijsotl.2010.040217
  • [4] Baker, R. S. J. D. (2010). Data mining for education. In B. McGaw, P. Peterson & E. Baker (Eds.), International Encyclopedia of Education (3rd ed, vol. 7, pp. 112–118). Elsevier.
  • [5] Baker, R. S. J. D., & Yacef, K. (2009). The state of educational data mining in 2009: a review and future visions. Journal of Educational Data Mining, 1(1), 3–17.
  • [6] Batista, G. E. A. P. A., & Monard, M. C. (2010). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5–6), 519–533. https://doi.org/10.1080/713827181
  • [7] Breve, B., Caruccio, L., Deufemia, V., & Polese, G. (2022). RENUVER: A Missing Value Imputation Algorithm based on Relaxed Functional Dependencies. Proceedings of the 25th International Conference on Extending Database Technology (EDBT) (pp. 52-64). OpenProceedings.org.
  • [8] Brown, A. W., Kaiser, A. K., & Allison, D. B. (2018). Issues with data and analyses: Errors, underlying themes, and potential solutions. PNAS, 115(11), 2563-2570. https://doi.org/10.1073/pnas.1708279115
  • [9] Bucos, M., & Drăgulescu, B. (2018). Predicting Student Success Using Data Generated in Traditional Educational Environments. TEM Journal, 7(3), 617-625. https://doi.org/10.18421/TEM73-19
  • [10] Castro, F., Vellido, A., Nebot, A., & Mugica, F. (2007). Applying data mining techniques to e-learning problems. In: Evolution of Teaching and Learning Paradigms in Intelligent Environment. Studies in Computational Intelligence (vol. 62, pp. 183– 221). Springer. https://doi.org/10.1007/978-3-540-71974-8_8
  • [11] Choudhury, A., & Kosorok, M. R. (2020), Missing data imputation for classification problems. arXiv:2002.10709v1. https://arxiv.org/pdf/2002.10709v1.pdf
  • [12] Coelho, O. B., & Silveira, I. (2017). Deep Learning applied to Learning Analytics and Educational Data Mining: A Systematic Literature Review. Anais do SBIE 2017 (Proceedings of the SBIE 2017) (pp. 143-152). https://doi.org/10.5753/cbie.sbie.2017.143
  • [13] Daberdaku, S., Tavazzi, E., & Di Camillo, B. A. (2020). Combined Interpolation and Weighted K-Nearest Neighbours Approach for the Imputation of Longitudinal ICU Laboratory Data. Journal of Healthcare Informatics Research, 4(3), 174–188. https://doi.org/10.1007/s41666-020-00069-1
  • [14] Donders, A. R. T., van der Heijden, G. J. M. G., Stijnen, T., & Moons, K. G. M. (2006). A gentle introduction to imputation of missing values. Journal of clinical epidemiology, 59, 10, 1087–1091.
  • [15] Fiore, U. (2019).Neural Networks in the Educational Sector: Challenges and Opportunities. Balkan Region Conference on Engineering and Business Education, 3(1), 332-337. https://doi.org/10.2478/cplbu-2020-0039
  • [16] Joel, L. O., Doorsamy, W., & Paul, B. S. (2022). A Review of Missing Data Handling Techniques for Machine Learning. International Journal of Innovative Technology and Interdisciplinary Sciences, 5(3), 971–1005. https://doi.org/10.15157/IJITIS.2022.5.3.971-1005
  • [17] Jolani, S., Debray, T.P., Koffijberg, H., van Buuren, S., & Moons, K. G. (2015). Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Statistic in Medicine, 34(11), 1841-63. https://doi.org/10.1002/sim.6451
  • [18] Koedinger, K., Cunningham, K., Skogsholm, A., & Leber, B. (2008). An open repository and analysis tools for finegrained, longitudinal learner data. In: First International Conference on Educational Data Mining (pp. 157–166).
  • [19] McCalla, G. (2004). The ecological approach to the design of elearning environments: purpose-based capture and use of information about learners. Journal of Interactive Media Education, 1, 3. https://doi.org/10.5334/2004-7-mccalla
  • [20] Morales, C. R., Ventura, S. (2006). Data Mining in E-learning. Wit-Press.
  • [21] Nadimi-Shahraki, M. H., Mohammadi, S., Zamani, H., Gandomi, M., & Gandomi, A. H. (2021). A Hybrid Imputation Method for Multi-Pattern Missing Data: A Case Study on Type II Diabetes Diagnosis, Electronics, 10(24), 3167. https://doi.org/10.3390/electronics10243167
  • [22] Omri, B.-S. (2019). Data Pollution. Journal of Legal Analysis, 11, 104–159. https://doi.org/10.1093/jla/laz005.
  • [23] Pasina, I., Bayram, G., Labib, W., Abdelhadi, A., & Nurunnabi, M. (2019). Clustering students into groups according to their learning style. MethodsX, 6, 2189-2197. https://doi.org/10.1016/j.mex.2019.09.026
  • [24] Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … & Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 38(3), 705–871. https://doi.org/10.1016/J.IJFORECAST.2021.11.001
  • [25] Romero, C., & Ventura, S.(2013). Data Mining in Education. WIREs Data Mining Knowledge Discovery, 3, 12–27. https://doi.org/10.1002/widm.1075
  • [26] Wang, T., Xiao, B., & Ma, W. (2022). Student Behavior Data Analysis Based on Association Rule Mining. International Journal of Computational Intelligence Systems, 15, 32. https://doi.org/10.1007/s44196-022-00087-4
  • [27] Zhou, D. (2021). Financial Market Prediction and Simulation Based on the FEPA Model. Journal of Mathematics, 2021, 5955375. https://doi.org/10.1155/2021/5955375
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f9004362-6987-43a9-b59c-ea5411a25c6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.