PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An autonomous monitoring system based on object shape detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In traditional monitoring systems, stationary cameras are supervised only by a human operator, who may easily miss some events recorded by a camera. Because it is imperative for a surveillance system to be reliable, its autonomy can be extended by applying computer vision algorithms to a video signal and also by the use of mobile robots capable of monitoring tight and occluded areas. In this paper, we present an overview of the concept of an autonomous monitoring system based on object shape detection. Our goal is to develop a real-time system which robustly and efficiently identifies objects on the basis of their approximate shape. For monitoring the environment we use active and smart cameras capable of remote position control, as well as mobots equipped with video sensors. After performing the object extraction from individual video frames, each new detected object is decomposed into simple graphical primitives like lines, circles, rectangles etc. and then identified in a database using the Query by Shape (QS) method.
Wydawca
Rocznik
Strony
349--351
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wzory
Twórcy
autor
  • Kielce University of Technology, 7 Tysiaclecia Panstwa Polskiego Ave., 25-314 Kielce, Poland
autor
  • Kielce University of Technology, 7 Tysiaclecia Panstwa Polskiego Ave., 25-314 Kielce, Poland
autor
  • Kielce University of Technology, 7 Tysiaclecia Panstwa Polskiego Ave., 25-314 Kielce, Poland
Bibliografia
  • [1] Valera M., and Velastin S. A.: Intelligent distributed surveillance systems: a review. IEE, IEE Proceedings on Vision, Image and Signal Processing, vol. 152, pp. 192–204, 2005.
  • [2] Kumar P., Mittal A., and Kumar P.: Study of Robust and Intelligent Surveillance in Visible and Multimodal Framework. Informatica (Slovenia), vol. 32, no. 1, pp. 63–77, 2008.
  • [3] Hampapur A., Brown L., Connell J., Pankanti S., Senior A., and Tian Y.: Smart Surveillance: Applications, Technologies and Implications. Information, Communications and Signal Processing, vol. 2, pp. 1133–1138, 2003.
  • [4] Chen T. P., Haussecker H., Bovyrin A., Belenov R., Rodyushkin K., Kuranov A., and Eruhimov V.: Computer Vision Workload Analysis: Case Study of Video Surveillance Systems. Intel Technology Journal, vol. 9, 2005.
  • [5] Deniziak S., and Michno T.: Query by Shape for Image Retrieval from Multimedia Databases. Springer, Beyond Databases, Architectures and Structures, pp. 377–386. 2015.
  • [6] Tajeripour F., Saberi M., Fekri-Ershad S.: Developing a Novel Approach for Content Based Image Retrieval Using Modified Local Binary Patterns and Morphological Transform, 2014.
  • [7] Greenspan H., Dvir G., and Rubner Y.: Region Correspondence for Image Matching via EMD Flow. IEEE, IEEE Workshop on Content-based Access of Image and Video Libraries, pp. 27–31, 2000.
  • [8] Destrempes F., Mignotte M., and Angers J.-F.: Localization of Shapes Using Statistical Models and Stochastic Optimization. IEEE, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1603–1615, 2007.
  • [9] Deniziak S., and Michno T.: Query-by-Shape Interface for Content Based Image Retrieval. 8th International Conference on Human System Interaction, pp. 108–114, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8feab75-39a3-4080-b8a6-2df8676d30f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.