PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sequential leaching analysis to investigate the sintering process of coal, cereal pellets and wood pellets Ash

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of inorganic elements in solid fuels is not only considered a direct source of problems in the furnace but is also connected with the release of pollutants into air during combustion. This article focuses on the sintering characteristics of biomass and coal ashes, in particular on the leaching processes, and their impact on the tendency to sinter ash. Biomass and coal ash with high alkali metal concentration can deposit in boiler sections and cause severe operating problems such as slagging, fouling and corrosion of boiler and heat exchanger surface, limiting heat transfer. Two biomass types and one coal ash with different origin and different chemical compositions were investigated. A sequential leaching analysis was employed in this study to elucidate the modes of occurrence of metals that can transform into fuel extract. Sequential leaching analysis was conducted as a two-step process: using distilled water in the first step and acetic acid in the second step. The chemical composition of ashes, before and after each step of the leaching processwas studied using ICP-OES method. The standard Ash Fusion Temperature (AFTs) technique was also employed to assess the sintering tendency of the tested samples. It was observed that the presence of key elements such as sodium, potassium, magnesium and sulphur (elucidated in the leaching process) plays a significant role in sintering process. The sintering tendency enhances when the concentration of these elements increases.
Słowa kluczowe
Rocznik
Strony
189–--199
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Arvelakis S., Gehrmann H., Beckmann M., Koukios E.G., 2005. Preliminary results on the ash behaviour of peach stones during fluidized bed gasification: Evaluation of fractionation and leaching as pre-treatments. Biomass Bioenergy, 28, 331–338. DOI: 10.1016/j.biombioe.2004.08.016.
  • 2. Bonnett R., Czechowski F., 1987. Metalloporphyrins in coal: 3. Porphyrins and metalloporphyrins in petrographic components of a subbituminous coal. Fuel, 66, 1079–1083. DOI: 10.1016/0016-2361(87)90304-8.
  • 3. Bonnett R., Burke P.J., 1985. Iron porphyrins in coal from the United States. Geochim. Cosmochim. Acta, 49, 1487–1489. DOI: 10.1016/0016-7037(85)90298-4.
  • 4. CallotH.J.,OcampoR.,AlbrechtP.,1990. Sedimentaryporphyrins:Correlationswithbiologicalprecursors.Energy Fuels, 4, 635–639. DOI: 10.1021/ef00024a002.
  • 5. Chuan Z., 2017. Distribution, occurrence and leaching dynamic behavior of sodium in Zhundong coal. Fuel, 190, 189–197. DOI: 10.1016/j.fuel.2016.11.031.
  • 6. Fernandez Llorente M.J., Daz Arocas P., Gutirrez Nebot L., Carrasco Garca J.E., 2008. The effect of the addition of chemical materials on the sintering of biomass ash. Fuel, 87, 2651–2658. DOI: 10.1016/j.fuel.2008.02.019.
  • 7. Izquierdo M., Querol X., 2012. Leaching behaviour of elements from coal combustion fly ash: An overview. Int. J. Coal Geol., 94, 54–66. DOI: 10.1016/j.coal.2011.10.006.
  • 8. Jenkins B.M., Bakker R.R., Baxter L.L., Gilmer J.H., 1997. Combustion characteristics of leached biomass. In: Bridgwater A.V., Boocock D.G.B. (Eds.), Developments in Thermochemical Biomass Conversion. Springer, Dordrecht, 1316–1330. DOI: 10.1007/978-94-009-1559-6_104.
  • 9. Gao Y., Li X., Ding L., Wang W., 2017. Na and Ca removal from Zhundong coal by a novel CO2-water leaching method and the ashing behavior of the leached coal. Fuel, 210, 8–14. DOI: 10.1016/j.fuel.2017.08.046.
  • 10. Gupta S.K., Wall T.F., Creelman R.A., Gupta R.P., 1998. Ash fusion temperatures and the transformations of coal ash particles to slag. Fuel Process. Technol., 56, 33–43. DOI: 10.1016/S0378-3820(97)00090-8.
  • 11. Kalembkiewicz J., Sitarz-Palczak E., 2015. Efficiency of leaching tests in the context of the influence of the fly ash on the environment. J. Ecological Engineering, 16, 67–80. DOI: 10.12911/22998993/589.
  • 12. Lindstrom E., Sandstrom M., Bostrom D., Ohman M., 2007. Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuels, 21, 710–717. DOI: 10.1021/ef060429x.
  • 13. Liu B., He Q., Jiang Z., Xu R., Baixing H., 2013. Relationship between coal ash composition and ash fusion temperatures. Fuel, 105, 293–300. DOI: 10.1016/j.fuel.2012.06.046.
  • 14. Liu Y., Gupta R., Elliot L., Wall T., Fujimori T., 2007. Thermochemical analysis of laboratory ash, combustion ash and deposits from coal combustion. Fuel Process. Technol., 88, 1099–1107. DOI: 10.1016/j.fuproc.2007.06.028.
  • 15. Nunes L.J.R., Matias J.C.O., Catalo J.P.S., 2016. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable Sustainable Energy Rev., 53, 235–242. DOI: 10.1016/j.rser.2015.08.053.
  • 16. Renganathan K., Zondlo J.W., Mintz E.A., Kneisl P., Stiller A.H., 1988. Preparation of an ultra-low ash coal extract under mild conditions. Fuel Process. Technol., 18, 3, 273–278. DOI: 10.1016/0378-3820(88)90051-3.
  • 17. Richaud R., Lazaro M.J., Lachas H., Miller B.B., Herod A.A., Dugwell D.R., Kandiyoti R., 2000. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom., 14, 317–328. DOI: 10.1002/(SICI)1097-0231(20000315)14:5<317::AIDRCM852>3.0.CO;2-2.
  • 18. Sakanishi K., Akashi E., Nakazato T., Tao H., 2004. Characterization of eluted metal components from coal during pretreatment and solvent extraction. Fuel, 83, 739–743. DOI: 10.1016/j.fuel.2003.08.022.
  • 19. Skrifvars B.J., Backman R., Hupa M., 1998. Characterization of the sintering tendency of ten biomass ashes in FBC conditions by a laboratory test and by phase equilibrium calculations. Fuel Process. Technol., 56, 55–67. DOI: 10.1016/S0378-3820(97)00084-2.
  • 20. Silva E., Oliveira L., Li S.W., Gress J., 2018. Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios. J. Hazard. Mater., 341, 66–74. DOI: 10.1016/j.jhazmat.2017.07.010.
  • 21. Steenari B.M., Lindqvist O., 1998. High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass Bioenergy, 14, 67–76. DOI: 10.1016/S0961-9534(97)00035-4.
  • 22. Steenari B.M., Schelander S., Lindqvist O., 1999. Chemical and leaching characteristics of ash from combustion of coal, peat and wood in a 12 MW CFB a comparative study. Fuel, 78, 249–258. DOI: 10.1016/S00162361(98)00137-9.
  • 23. Tiwari M.K., Bajpai S. Dewangan U.K., Tamrakar R.K., 2015. Suitability of leaching test methods for fly ash and slag: A review. J. Radiat. Res. Appl. Sci., 8, 523–537. DOI: 10.1016/j.jrras.2015.06.003.
  • 24. Van Dyk J.C., Keyser MJ., 2014. Influence of discard mineral matter on slag liquid formation and ash melting properties of coal A FACTSAGETM simulation study. Fuel, 116, 834–840. DOI: 10.1016/j.fuel.2013.06.002.
  • 25. Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G., 2013. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel, 105, 40–76. DOI: 10.1016/j.fuel.2012.09.041.
  • 26. Vassilev S.V., Vassileva C.G., Baxter D., Andersen L.K., 2010. Relationships between chemical and mineral composition of coal and their potential applications as genetic indicators. Part 1. Chemical characteristics. Geol. Balcanica, 39, 3, 21–41.
  • 27. Wang J., Li C., Sakanishi K., Nakazato T., Tao H., Takanohashi T., Takarada T., Saito I., 2005. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction. Fuel, 84, 1487–1493. DOI: 10.1016/j.fuel.2005.01.012.
  • 28. Zhang L, Takanohashi T, Nakazato T, Saito I., 2008. Sequential leaching of coal to investigate the elution of inorganic elements into coal extract (HyperCoal). Energy Fuels, 22, 2474–2481. DOI: 10.1021/ef800127g.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8fe89ed-9a0a-4569-8415-e0cf0b913643
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.