PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-frequency Representation -enhanced Transfer Learning for Tool Condition Monitoring during milling of Inconel 718

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate tool condition monitoring (TCM) is important for the development and upgrading of the manufacturing industry. Recently, machine-learning (ML) models have been widely used in the field of TCM with many favorable results. Nevertheless, in the actual industrial scenario, only a few samples are available for model training due to the cost of experiments, which significantly affects the performance of ML models. A time-series dimension expansion and transfer learning (TL) method is developed to boost the performance of TCM for small samples. First, a time-frequency Markov transition field (TFMTF) is proposed to encode the cutting force signal in the cutting process to two-dimensional images. Then, a modified TL network is established to learn and classify tool conditions under small samples. The performance of the proposed TFMTF-TL method is demonstrated by the benchmark PHM 2010 TCM dataset. The results show the proposed method effectively obtains superior classification accuracies for small samples and outperforms other four benchmark methods.
Rocznik
Strony
art. no. 165926
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • School of information science and technology, Northwest University, China
  • College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, China
autor
  • College of mechanical and electrical engineering, Wenzhou University, China
autor
  • Zhejiang Meishuo Electric Technology Co., Ltd, China
autor
  • Zhejiang Meishuo Electric Technology Co., Ltd, China
autor
  • Zhejiang Meishuo Electric Technology Co., Ltd, China
autor
  • Zhejiang Meishuo Electric Technology Co., Ltd, China
autor
  • College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, China
autor
  • College of mechanical and electrical engineering, Wenzhou University, China
autor
  • College of mechanical and electrical engineering, Wenzhou University, China
Bibliografia
  • 1. Yan S, Shao HD, Xiao YM, Liu B, Wan JF. Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises. Robotics and Computer-Integrated Manufacturing 2023; 79: 102441, https://doi.org/10.1016/j.rcim.2022.102441.
  • 2. Wang HC, Sun W, Sun WF, Ren Y. A novel tool condition monitoring based on Gramian angular field and comparative learning. International Journal of Hydromechatronics 2023; 6(2): 93-107, https://doi.org/10.1504/IJHM.2022.10048957.
  • 3. Sau A, Mu B, Sa C, et al. Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu-B-CrC based ceramic matrix composites. Journal of Materials Research and Technology, 2022; 16:1243-1259, https://doi.org/10.1016/j.jmrt.2021.12.063.
  • 4. Jae-Woong, Youn, Min-Yang, et al. A Study on the Relationships Between Static/Dynamic Cutting Force Components and Tool Wear. Journal of Manufacturing Science & Engineering, 2001; 123(2): 196-205, https://doi.org/10.1115/1.1362321.
  • 5. Pimenov D Y, Bustillo A, Wojciechowski S, et al. Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review. Journal of Intelligent Manufacturing 2023; 34: 2079-2121, https://doi.org/10.1007/s10845-022-01923-2.
  • 6. Selvaraj V, Xu Z, Min S. Intelligent Operation Monitoring of an Ultra-Precision CNC Machine Tool Using Energy Data. International Journal of Precision Engineering and Manufacturing- Green Technology 2022; 10: 59-69, https://doi.org/10.1007/s40684-022-00449-5.
  • 7. Zhen D, Li DK, Feng GJ, et al. Rolling bearing fault diagnosis based on VMD reconstruction and DCS demodulation. International Journal of Hydromechatronics 2022; 5(3): 205-225, https://doi.org/10.1504/IJHM.2022.10048012.
  • 8. Xiao YM, Shao HD, Han SY, et al. Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain. IEEE-ASME Transactions on Mechatronics 2022; 27(6): 5254-5263, https://doi.org/10.1109/TMECH.2022. 3177174.
  • 9. Zhou YQ, Kumar A, Parkash C, et al. A novel entropy-based sparsity measure for prognosis of bearing defects and development of a sparsogram to select sensitive filtering band of an axial piston pump. Measurement 2022; 203: 111997, https://doi.org/10.1016/j.measurement.2022.111997.
  • 10. Yu J, Shuang L, Tang D, et al. A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction. International Journal of Advanced Manufacturing Technology 2016; 91(1-4): 1-11, https://doi.org/10.1007/s00170-016-9711-0.
  • 11. Benkedjouh T, Medjaher K, Zerhouni N, et al. Health Assessment and Life Prediction of cutting tools based on support vector regression. Journal of Intelligent Manufacturing 2015; 26(2): 213-223, https://doi.org/10.1007/s10845-013-0774-6.
  • 12. Ma M, Mao Z. Deep-Convolution-Based LSTM Network for Remaining Useful Life Prediction. IEEE Transactions on Industrial Informatics 2021; 17(3): 1658-1667, https://doi.org/10.1109/TII.2020.2991796.
  • 13. Zhou YQ, Kumar A, Parkash C, et al. Development of entropy measure for selecting highly sensitive WPT band to identify defective components of an axial piston pump. Applied Acoustics; 2023; 203: 109225, https://doi. org/10.1016/j.apacoust.2023.109225.
  • 14. Vashishtha G, Kumar R. Autocorrelation energy and aquila optimizer for MED filtering of sound signal to detect bearing defect in Francis turbine. Measurement Science and Technology, 2022, 33(1), 015006, https://doi.org/10.1088/1361-6501/ac2cf2.
  • 15. Zhang J, Kong X, Cheng L, et al, Intelligent fault diagnosis of rolling bearings based on continuous wavelet transform multiscale feature fusion and improved channel attention mechanism. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2023: 25(1), 16, https://doi.org/10.17531/ein.2023.1.16.
  • 16. Cheng YW, Lin MX, Wu J, et al. Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network. Knowledge-Based Systems 2021; 216: 106796, https://doi.org/10.1016/j.knosys.2021.106796.
  • 17. Navarro-Devia JH, Chen Y, Dao DV, et al. Chatter detection in milling processes- a review on signal processing and condition classification. International Journal of Advanced Manufacturing Technology 2023, https://doi.org/10.1007/s00170-023-10969-2.
  • 18. Yi L, Jiang YJ, Zhang QC, et al.Remaining useful life prediction with insufficient degradation datbased on deep learning approach. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021; 23(4): 745-756, https://doi.org/10.17531/ein.2021.4.17.
  • 19. Liu CH, Jiao J, Li WL, et al. Tr-Predictior: An Ensemble Transfer Learning Model for Small-Sample Cloud Workload Prediction. Entropy 2022; 24(12), 1770, https://doi.org/10.3390/e24121770.
  • 20. Nasir V, Sassani F. A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges. International Journal of Advanced Manufacturing Technology 2021; 115: 2683-2709, https://doi.org/10.1007/s00170-021-07325-7.
  • 21. Zhou Y, Zhi G, Chen W, et al. A new tool wear condition monitoring method based on deep learning under small samples. Measurement, 2022; 189, 110622, https://doi.org/10.1016/j.measurement.2021.110622.
  • 22. Zhuang FZ, Qi ZY, Duan KY, et al. A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE 2021; 109(1): 43-76, https://doi.org/10.1109/JPROC.2020.3004555.
  • 23. Marei M, Zaatari SE, Li WD. Transfer learning enabled convolutional neural networks for estimating health state of cutting tools. Robotics and Computer-Integrated Manufacturing 2021; 71: 102145, https://doi.org/10.1016/j.rcim.2021.102145.
  • 24. Yang B, Lei Y, Jia F, et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mechanical Systems and Signal Processing 2018; 122: 692-706, https://doi.org/10.1016/j.ymssp.2018.12.051.
  • 25. Wang Z, Oates T. Imaging Time-Series to Improve Classification and Imputation. Proceedings of the 24th International Conference on Artificial Intelligence 2015: 3939-3945, https://doi.org/10.1196/annals.1333.032.
  • 26. Lyu MZ, Wang JM, Chen JB. Closed-Form Solutions for the Probability Distribution of Time-Variant Maximal Value Processes for Some Classes of Markov Processes. Communications in Nonlinear Science and Numerical Simulation 2021; 99(8): 105803, https://doi.org/10.1016/j.cnsns.2021.105803.
  • 27. Udmale SS, Singh SK, Singh R, et al. Multi-fault bearing classification using sensors and ConvNet-based transfer learning approach. IEEE Sensors Journal 2020; 20(3): 1433-1444, https://doi.org/10.1109/JSEN.2019.2947026.
  • 28. He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, https://doi.org/10.1109/CVPR.2016.90
  • 29. The Prognostics and Health Management Society, 2010 Conference Data Challenge. https://www.phmsociety.org/competition/phm/10.
  • 30. Feng ZP, Liang M, Chu FL. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mechanical Systems and Signal Processing 2013; 38(1): 165-205, https://doi.org/10.1016/j.ymssp.2013.01.017.
  • 31. Hess-Nielsen, N, Wickerhauser, et al. Wavelets and time-frequency analysis. Proceedings of the IEEE, 1996, https://doi.org/10.1109/ 5.488698.
  • 32. Nawab S H, Quatieri T F . Short-time Fourier transform[C]// Advanced Topics in Signal Processing. Prentice-Hall, Inc. 1988.
  • 33. Bai YL, Yang JW, Wang JH, Zhao Y, Li Q. Image representation of vibration signals and its application in intelligent compound fault diagnosis in railway vehicle wheelset-axlebox assemblies. Mechanical Systems and Signal Processing 2021; 152, 107421, https://10.1016/j.ymssp.2020.107421
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8fe46a4-0e47-4611-8f39-3ff07592dcee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.