Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In his paper I examine influence of small gravitational torque on rotation of elongated triaxial bodies. The Hamiltonian of a body moving in central gravitational field separates on two parts: orbital movement about central body and a rotation around the body mass center. For the small bodies like asteroids the separation spin-orbit constant has rate 10-12 of total energy and orbital and rotational motion are almost independent. This way we may consider orbital motion as a known function of time or true anomaly. Using the Hamiltonian I found gravitational torque affecting triaxial body in quadruple approximation. The Euler-Liouville equation is a system of non-linear differential equations. Position of the body is described by six variables: vector R in inertial reference system and three Euler angle: φ, ψ and ϑ rigidly bounded to the principal axes of the body inertia tensor. The rotational motion is described by angular velocity (vector ω) or angular momentum vector L=Îω or Î=diag(Ix,Iy,Iz) or Î=Izdiag(a;b;1) denotes diagonal inertia tensor of the body) and three Euler angle. A numerical resolution of gravitationally disturbed Euler- Liouville equation is compared with the undisturbed one. This solution is well known as the Poinset solution of the free body rotation. Modelling of rotational motion is a great interest because its connections to astronomical measurements of asteroids physical properties. I found that direction of spin-vector of a rotating body in NPA state of motion changes markedly when forced by gravitational torque.
Wydawca
Czasopismo
Rocznik
Tom
Strony
45--64
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Geodesy and Cartography Institute, Academy of Management, Lodz, Poland
Bibliografia
- 1. Ashenberg j., 2007, Mutual gravitational potential and torque of solid bodies via inertia integrals, Celestial Mechanics and Dynamical Astron-omy 99, pp. 149-159.
- 2. Cheng A.F., 2009; Fundamentally distinct outcomes of asteroid colli-sional evolution and catastrophic disruption, Planetary and Space Science 57, pp. 165-172.
- 3. Cicalo S., Scheeres D.J., 2010, Averaged rotational dynamics of an aste-roid in tumbling rotation under the YORP torque, Celestial Mechanics and Dynamical Astronomy 106, pp. 301-337.
- 4. Efroimsky M., 2001, Relaxation of wobbling asteroids and comets – theoretical problems, perspectives of experimental observations, Planeta-ry and Space Science 49, pp. 937-955.
- 5. Harris A.W., 2002, On the Slow Rotation of Asteroids, Icarus 156, pp. 184-190.
- 6. HestrofferD., Tanga P., 2006, Asteroids from Observations to Models -Dynamics of Extended Celestial Bodies and Rings, Lecture Notes in Physics 682, pp. 89-116.
- 7. Kadono T., Arakawa M., Ito T., Ohtsuki K., 2009; Spin rates of fast-rotating asteroids and fragments in impact disruption, Icarus 200, pp.694-697.
- 8. Kaźmierczak A., 2011, A comparison between some approximate and numerical solution of Euler-Liouville equation for rigid non-symmetrical free body with fast oscillating interaction in gravitational field, Journal of Applied Computer Science Methods 3, pp. 3
- 9. Krupowicz A., 1986; Metody numeryczne zagadnień początkowych rów-nań różniczkowych zwyczajnych, Państwowe Wydawnictwo Naukowe, Warszawa.
- 10. Kryszczyńska A., La Spina A., Paolicchi P., HarrisA.W., Breiter S., Pra-vec P., 2007; New findings on asteroid spin-vector distributions, Icarus 192, pp.223-237.
- 11. Neishtadt A.I., Scheeres D.J., SidorenkoV.V., Stoke P.J., Vailiev A.A., 2003, The influence of reactive torques on comet nucleus rotation, Celes-tial Mechanics and Dynamical Astronomy 86, pp. 249-275.
- 12. Noyelles B., 2010; Theory of the rotation of Janus and Epimetheus, Ica-rus 207, pp.887-902
- 13. Pravec P., Harris A.W., Scheirich P., Kušnirák P., Šarounowá L., Herge-nrother C.W., Mottola S., Hicks M.D., Masi G., Krugly Yu.N., Shev-chenko V.G., Nolan M.C., Howell E.S., Kaasalainen M., Galád A., Brown P., DeGraff D.R., Lambert J.V., Cooney W.R. Jr., Foglia S., 2005; Tumbling asteroids, Icarus 173, pp. 108-131.
- 14. Rubinowicz W., Królikowski W., 1967, Mechanika teoretyczna, Pań-stwowe Wydawnictwo Naukowe, Warszawa..
- 15. Ryabova G.O., 2002, Asteroid 1620 Geographos; I. Rotation, Solar Sys-tem Research 36, pp. 168-174.
- 16. Scheeres D.J., Ostro R.J., Werner R.A., Asphaug E., HudsonR.S., 2000, Effects of Gravitational Interactions on Asteroid Spin States, Ikarus 147, pp. 106-118.
- 17. Takeda T., Ohtsuki K., 2007; Mass dispersal and angular momentum transfer during collision of rubble-pile asteroids, Icarus 189, pp. 256-273.
- 18. Tanga P., Hestroffer D., Delbó M., Richardson D.C. 2009; Asteroids ro-tation and shapes from numerical simulations of gravitational re-accumulation, Planetary and Space Science 57, pp. 193-200.
- 19. Vokrouhlickỳ D., Nesvornỳ D., Bottke W.F.,2006; Secular spin dynam-ics of inner main-belt asteroids, Icarus 184, pp. 1-28.
- 20. Vokrouhlickỳ D., Bottke W.F., Nesvornỳ D., 2005; The spin state of 433Eros and its possible implications, Icarus 175, pp. 419-434.
- 21. Vokrouhlickỳ D., Briter S., Nesvornỳ D., Bottke W.F.,2007; Generalized YORP evolution: Onset of tumbling and new asymptotic state , Icarus 191, pp. 636-650.
- 22. Warner B.D., Harris A.W., Pravec P., 2009; The asteroid lightcurve da-tabase, Icarus 202, pp. 134-146.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f8f79bde-ab88-46e9-bdc3-e2ab99e20789